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Abstract:

Pension funds face macro-longevity risk or uncertainty about future mortality rates.

We analyze macro-longevity risk sharing between cohorts in a pension scheme as a risk

management tool. We show that both the optimal risk-sharing rule and welfare gains from

risk sharing depend on the retirement age policy. Welfare gains from sharing macro-longevity

risk measured on a 10-year horizon in case of a fixed retirement age are between 0.2 and 0.3

percent of certainty equivalent consumption after retirement. Cohorts experience, in this

case, a similar impact of macro-longevity risk on post retirement consumption and it is not

optimal for young cohorts to absorb risk of old cohorts. However, in case the retirement

age is fully linked to changes in life expectancy, welfare gains are substantially higher.

The risk bearing capacity of workers is larger when they use their labor supply as a hedge

against macro-longevity risk. As a result, workers absorb risk from retirees in the optimal

risk-sharing rule, thereby increasing the welfare gain up to 2.7 percent.
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1 Introduction

Macro-longevity risk is the uncertainty about future mortality rates. Mortality rates may, e.g.,

decrease as a consequence of medical improvements, or may increase because of new diseases.

Macro-longevity risk is a systematic risk. It affects the entire population. Macro-longevity risk

does not decrease by sharing it within a pool of participants of the same cohort. Nonetheless,

sharing macro-longevity risk with other cohorts can be beneficial if cohorts are differently

affected by macro-longevity risk. Macro-longevity risk differs from micro-longevity risk or the

individual uncertainty about the time of death. Micro-longevity risk is an idiosyncratic risk

that can be fully diversified by pooling enough participants in a pension scheme.

Macro-longevity risk has a significant impact on pension benefits. The impact depends on the

configuration. In a defined benefit (DB) pension scheme macro-longevity risk increases the

uncertainty in the funding ratio. The risk is, e.g., borne by the employer and employees that

contribute to the pension scheme. In a defined contribution (DC) pension scheme with a fixed

annuity, pension benefits are guaranteed after retirement and macro-longevity risk is borne by

the pension provider, for example the shareholders of an insurance company. In a DC pension

scheme with a variable annuity pension benefits are adjusted to changes in future mortality

rates. As a consequence, participants bear macro-longevity risk themselves. Retirees are

especially vulnerable to macro-longevity risk because they cannot compensate lower pension

benefits by working longer or saving more. However, also future pension benefits of employees

may be negatively affected if mortality decreases. Either their benefits are reduced or their

contributions are increased to finance a decrease in mortality rates. Hence, macro-longevity

risk affects both retirees and employees. However, it does not affect all cohorts in the same

way or with the same amount. Medical progress or diseases may affect cohorts in a different

way. Furthermore, workers have more risk-absorbing capacity compared to retirees. They

can adjust their labor supply. These differences create a clear case for risk sharing. This is

strengthened by the fact that the market for macro-longevity risk is close to absent.

The economic problem central in this paper is optimal risk sharing between cohorts in a

pension scheme. Collective risk sharing is a risk management method that allocates risks to

cohorts. We maximize aggregate expected utility of all participants in the situation where a

social planner is present. The social planner makes decisions on behalf of the participants.

In this way we find the Pareto-optimal risk-sharing rule and calculate the welfare gain of

the Pareto improvement. We determine a fair risk compensation for cohorts who absorb

macro-longevity risk of other cohorts using a utility-based fairness criterion such that all

participant experience the same welfare gain. We find that the design of the retirement age
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policy has a large impact on the optimal risk-sharing rule and size of welfare gains. If the

retirement age is fixed, welfare gains from sharing macro-longevity risk measured on a 10-year

horizon are between 0.2 and 0.3 percent of certainty equivalent consumption after retirement.

In this case, the impact of macro-longevity risk on consumption after retirement is more or less

equal for different cohorts. Young cohorts do not absorb macro-longevity risk of other cohorts.

As a result, welfare gains from sharing macro-longevity risk are limited. If the retirement age

is linked to life expectancy by contrast, welfare gains from sharing macro-longevity risk are

substantially higher, up to 2.7 percent. The risk bearing capacity of workers is larger, because

they can use their labor supply as a hedge against macro-longevity risk. As a result, workers

absorb risk from retirees. After all, human capital of workers increases if they work longer.

Moreover, a positive risk compensation is not required for young cohorts to absorb risk of

retirees.

This paper contributes to the literature on macro-longevity risk. We approach this actuarial

topic from an economic perspective. It is to the best of our knowledge the first paper that

investigates Pareto-optimal risk-sharing rules of macro-longevity risk. Related papers are

De Waegenaere et al. (2017), De Waegenaere et al. (2018), and papers considering group

self-annuitisation schemes (GSAs), for example Piggott et al. (2005), Qiao and Sherris (2013)

and Boon et al. (2017). These papers investigate sharing micro- and macro-longevity risk. In

GSAs longevity risk is shared uniformly among participants in a pool. De Waegenaere et al.

(2017), De Waegenaere et al. (2018) consider ad hoc risk-sharing rules for micro- and

macro-longevity risk. We consider macro-longevity risk only and determine the optimal

risk-sharing rule. Moreover we include a risk compensation which is not the case in the above

mentioned papers. This paper also contributes to the literature on risk sharing. Most papers

on Pareto-optimal risk sharing focus on financial risks, e.g., Gollier (2008), Cui et al. (2011)

and Bovenberg and Mehlkopf (2014). We determine the Pareto-optimal risk-sharing rule for

a non-financial risk, namely macro-longevity risk. Finally, we are the first to investigate the

impact of different retirement age policies on sharing macro-longevity risk. Investigating

different retirement age policies is relevant as several countries link the retirement age to

life expectancy. Stevens (2017) investigates the impact of retirement age policies on the

individual retirement age, expected remaining lifetime at retirement and value of pension

benefits but does not consider collective risk sharing.

There are multiple alternative ways to manage macro-longevity risk. First, insurance is a

risk management method in which a third party guarantees to compensate specified losses

in return for a levy. For example, macro-longevity risk can be transferred to institutional

investors via financial products, traded in financial markets. This is called securitization

(Cairns et al. (2006a), Blake et al. (2006a), Ngai and Sherris (2011) and Hunt and Blake

(2015)). Securitization can be welfare improving because it achieves a more efficient
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risk allocation by distributing the risk among market participants who can better bear

the risk. Second, literature suggests that governments can establish solutions to manage

macro-longevity risk by issuing longevity bonds (Brown and Orszag (2006), Blake et al.

(2014)). In practice, the amount of financial products that transfer macro-longevity risk

is small (Basel Committee on Banking Supervision (2013)) and insurance companies and

governments are reluctant to underwrite macro-longevity risk. There are several reasons for

the lack of a well-functioning market, e.g. the existence of basis risk and the fact that the

government is not a natural issuer of longevity bonds because it is already exposed to longevity

risk.1 Blake et al. (2006b) divide the reasons for the lack of a well-functioning market into

design issues, pricing issues and institutional issues. Since there is no well-developed market

for longevity risk a replicating portfolio does not exist. Pelsser (2011) discusses and compares

several methods proposed in the literature to price risks in incomplete markets. In these

methods one has to define a pricing operator to determine the value of a payoff. In practice

these methods are difficult to implement. Third, buy-outs and buy-ins are ways to insure

macro-longevity risk (Lin et al. (2015)). A disadvantage of pension buy-outs and buy-ins

is that they are expensive.2 Fourth natural hedging is a way to manage macro-longevity

risk (Cox and Lin (2007)). Macro-longevity risk in annuity policies can be hedged with

mortality risk in life insurance policies.3 Participants living longer than expected have a

negative impact on annuity policies but a positive impact on life insurance products since

less participants die at a young age. However, mortality risk only provides a partial hedge

to longevity risk due to the different nature of both risks and the different age groups.

Moreover, the mortality risk market is more than five times smaller than the longevity risk

market (EIOPA (2011)).

The remainder of this paper is organized as follows. Section 2 describes the modeling of

macro-longevity risk. Section 3 explains the concept of collective risk sharing. Section 4

describes the different retirement age policies. Section 5 presents the results. Section 6

concludes and gives a policy evaluation.

1 Basis risk arises from the different mortality experience of the population cohort covered by the mortality

index and the cohort relevant to the hedger.
2 This is a result of insurance companies being typically subject to more stringent regulation than pension

funds and because any initial underfunding requires a lump-sum payment by the sponsor to reach full funding

before the plan can be sold to a third party (Basel Committee on Banking Supervision (2013).
3 In this context mortality risk is the risk that people live shorter than expected.
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2 Macro-longevity risk

We consider three sources of macro-longevity risk. These are visualized in Figure 1. The

first source is stochastic variation. This is the random variation in the aggregate realized

number of deaths. A stochastic mortality model captures stochastic variation.4 The second

source is parameter risk. It is the uncertainty about the true value of the parameters of

the stochastic model. The third source is model risk. This is the uncertainty about the

appropriateness of the mortality model. For instance, model risk can occur due to structural

breaks that are not captured by the model. Medical innovations or a rapid increase of obesity

can cause these structural breaks. All three sources of uncertainty can lead to mis-estimation

of mortality rates. A stochastic mortality model only takes into account stochastic variation

while ignoring the other sources of risk. Ideally, one wants to model macro-longevity risk

including all these sources of risk.

In this paper the main source of macro-longevity risk is stochastic variation. However, we

also consider a type of parameter risk. This will be discussed in more detail in Section 2.2.

In a sensitivity analysis in Section 5.1.3 we address model risk by considering an alternative

model for macro-longevity risk.

Stochastic

variation

Parameter

risk

Model

risk

Figure 1: Sources of macro-longevity risk.

We employ the widely used Lee and Carter (1992) model which is a stochastic mortality model

that allows for stochastic variation in death rates. It is fitted to historical data to forecast

death rates and to quantify macro-longevity risk. Cairns et al. (2011) discuss the suitability

of six stochastic mortality models for forecasting mortality and conclude that the Lee-Carter

model is both reasonably robust relative to historical data and produces plausible forecasts.5

Several academics use the Lee-Carter model to model macro-longevity risk, for example

4 Stochastic variation in death rates of individuals within cohorts, i.e., individual uncertainty about the time of

death, is excluded. We assume that cohorts are large enough so that micro-longevity risk is fully diversified.
5 Alternative stochastic mortality models are for example the model of Renshaw and Haberman (2006) that

is an extension of the Lee-Carter model including a cohort effect and the two-factor model of Cairns et al.

(2006b).
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Hari et al. (2008), Cocco and Gomes (2012), Stevens (2017) and De Waegenaere et al.

(2017). Moreover, the model is the basis of several mortality table forecasts in practice.6

We discuss the Lee-Carter model in Section 2.1 and elaborate on macro-longevity risk in the

Lee-Carter model in Section 2.2. In Section 4 we discuss different retirement age policies.

2.1 Lee-Carter model

The central death rate µx,t for a cohort of age x in year t equals

µx,t =
Dx,t

Ex,t
, (1)

where Dx,t is the number of deaths in year t among the people in the cohort of age x and Ex,t

is the number of people in the cohort of age x in year t.

The Lee-Carter model estimates the log central death rates with the following expression7

ln(µx,t) = αx + βxκt + εx,t, (2)

where αx is an age-specific constant, κt is a time trend and βx represents the sensitivity of the

log central death rates to the time trend. The time trend reflects the development of death

rates over time. This trend is generally downward implying an increasing life expectancy over

time. The error term εx,t is normally distributed with mean zero and age-dependent variance

σ2ε,x.

The Lee Carter model assumes that the central death rates are constant during a year, i.e.,

µx+s,t+s = µx,t(0 ≤ s ≤ 1). Therefore, we can approximate the one-year death probability qx,t

in the following way

qx,t ≈ 1 − exp(−µx,t). (3)

The one-year death probability is the probability that an individual of age x and alive at the

beginning of year t dies before year t + 1. The one-year survival probability px,t equals

px,t = 1 − qx,t ≈ exp(−µx,t). (4)

One-year survival probabilities can be used to calculate the probability that an individual of

age x in year t is still alive after i years. This is called the cumulative survival probability cptx,i

cptx,i =
i−1
∏
j=0

px+j,t+j . (5)

6 For example the U.S. Census Bureau and the U.S. Social Security Administration. The Actuarial Society

in the Netherlands (‘Koninklijk Actuarieel Genootschap’) uses an alternative specification of this model.
7 The logarithm of µx,t ensures that death rates cannot be negative. However, death rates can exceed unity

but this is not a problem in practice. This can be avoided by modeling ln(µx,t/(1 − µx,t)), but in that case

a linear trend in k does not imply a constant geometric rate of decline for each age-specific death rate (Lee

(2000)).

5

 Electronic copy available at: https://ssrn.com/abstract=3311420 



The Lee-Carter model forecasts survival probabilities by estimating the time trend κt in (2)

with a standard univariate time series model. Lee and Carter (1992) conclude after testing

several ARIMA specifications that the ARIMA(0,1,0) model, a random walk with drift, is

most appropriate to fit the data. This model equals

κt = c + κt−1 + ηt, (6)

where c is the drift and ηt is the error term that is normally distributed with mean zero and

variance σ2η. The Lee-Carter model assumes that the error terms εx,t in (2) and ηt in (6) are

independent. This independency implies that for each cohort mortality develops at an own

age-specific exponential rate.

Calibration of the Lee-Carter model

In this paper we use mortality data of Dutch females from 1985 until 2014 from the Human

Mortality Database to calibrate the parameters of the Lee-Carter model.8,9 The central death

rates µx,t are calculated using the number of deaths Dx,t and number of people Ex,t as in (1).

For very high ages no death rates are available in the database. When excluding the death

rates beyond the age of 90 the expected remaining lifetime will be underestimated. We apply

the method of Kannisto (1994) to extrapolate the central death rates for ages x ∈ {91, ...,110}

using the death rates of younger cohorts. This method uses a logistic regression based on µx,t

for ages x ∈ {80,81, ...,90}. Death rates above age x = 110 are assumed to be equal to the

death rates at age x = 110.

We estimate parameters αx, βx and κt in (2) using a singular value decomposition. However,

this method does not produce uniquely identified parameters. Therefore, we impose restrictions

to identify the model. We use the standard identification choice of Lee and Carter (1992) that

imposes the following constraints

110

∑
x=0

βx = 1

2014

∑
t=1985

κt = 0.

The age-specific constant αx is the average log central death rate of cohort of age x over time,

i.e., αx =
1
30

2014

∑
t=1985

ln(µx,t). Subsequently the drift c and variance σ2η in (6) are estimated using

8 Human Mortality Database (HMD). University of California, Berkeley (USA), and Max Planck Institute for

Demographic Research (Germany): http://www.mortality.org/.
9 A calibration period of 30 years is conventional. For statistical reliability, one would prefer a longer

calibration period (HMD). However, a shorter calibration period leads to a better estimate of the current

trend in mortality improvements.
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the κt’s.

Age
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Figure 2: Parameter estimates of the Lee-Carter model using mortality data of Dutch females

from 1985 until 2014. The top graph shows the age-specific constant αx, the middle graph

shows the sensitivity of death rates to the time trend βx and the bottom graph shows the

time trend κt. The bottom graph also contains the expected future time trend including a

90% confidence interval.

Figure 2 displays the estimates of the three key parameters in the Lee-Carter model in (2)

using mortality data of Dutch females from 1985 until 2014. The top graph shows that the

age-specific constant increases with age x. This implies higher death rates at higher ages.

This is intuitive as older people have a higher change of dying. The middle graph shows

that the sensitivity of death rates to the time trend in general decreases with age but in a

non-monotonic way. A decreasing sensitivity implies that death rates for high ages are less

effected by the time trend compared to death rates for young ages. The bottom graph shows

that the time trend kt decreases over time. This implies that death rates decrease over time. It

is result of for example medical innovations and better nutrition. The estimated drift equals

ĉ = −1.3. Each year the time trend κt decreases with 1.3 in expectation. The graph also

contains the expected future time trend including the 90% confidence interval that is a result

of the stochastic variation in the time trend.
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2.2 Macro-longevity risk in Lee-Carter model

As already mentioned at the start of Section 2 the main source of macro-longevity risk in this

paper is stochastic variation. Macro-longevity risk in the Lee-Carter model arises from two

random variables:

• Uncertainty in time trend : random shock ηt in the time trend κt in (6). It reflects the

uncertainty in the time trend, i.e., development of death rates over time. The impact

of this shock on future death rates depends on the size of ση and βx.

• Uncertainty in death rates: random shock εx,t in the log central death rate µx,t in (2).

It reflects particular age-specific historical influences not captured by the model. The

impact of this shock on future death rates depends on the size of σε,x.

We model the first source of macro-longevity risk, stochastic variation, as the aggregate

effect of those two random variables. We assume that ηt and εx,t are independent and

normally distributed. The sum of two independent normal random variables is again normally

distributed
ηt ∼ N(0, σ2η)

εx,t ∼ N(0, σ2ε,x)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⇒ βxηt + εx,t ∼ N(0, β2xσ
2
η + σ

2
ε,x). (7)

The trend risk ηt is multiplied with the sensitivity of to the time trend βx because

the sensitivity parameter βx determines the impact of the time trend on death rates.

Macro-longevity risk has zero mean because it is the risk that future mortality rates deviate

from the best estimate mortality rates.

In this research we do not consider yearly macro-longevity shocks but consider macro-longevity

risk on a 10-year horizon because a pension contract has a long horizon and we want to focus

on structural changes in life expectancy only. We determine macro-longevity shocks on a

10-year horizon by summing up the independent normal random variables in (7) over 10 years

9

∑
i=0

(βx+iηt+i + εx+i,t+i) ∼ N (0, σ2η

9

∑
i=0
β2x+i +

9

∑
i=0
σ2ε,x+i) . (8)

The second source of risk is parameter risk. We calibrate the parameters in the mortality

model using mortality data. When more recent mortality data are available we can recalibrate

the parameters. Recalibration changes the parameter estimates (Cairns (2013)). In this paper

we include recalibration risk. We use the realized death rates µx,t including the trend shocks

ηt and estimation shocks εx,t to recalibrate the parameters in (2) and (6). Subsequently, we

use these recalibrated parameters to forecast future death rates. By considering recalibration

risk we include the influence of parameter risk.10

The third source of macro-longevity risk is model risk. We initially exclude model risk in

10 A more formal way to include parameter risk is to use standard Bayesian methods (Cairns et al. (2006b)).
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our analysis and address this separately in Section 5.1.3.
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Figure 3: Impact of macro-longevity risk measured on a 10-year horizon in the Lee-Carter

model on the expected remaining lifetime and the value of a (deferred) variable annuity for

a Dutch female in 2014 in absolute terms (lefthand graphs) and relative change (righthand

graphs) assuming a constant interest rate r = 2% and fixed retirement age R = 67.

Figure 3 visualizes the impact of macro-longevity risk measured on a 10-year horizon in the

Lee-Carter model on the expected remaining lifetime (top graphs) and the value of a (deferred)

variable annuity (bottom graphs) by displaying different percentiles of the distribution.11

Besides the absolute impact on the expected remaining lifetime and the value of a (deferred)

annuity (lefthand graphs), it is also interesting to look at the relative change of these variables

(righthand graphs). We assume that the interest rate - used to determine the value of a

(deferred) annuity - equals r = 2% and the retirement age equals R = 67. One can also make

the retirement age contingent on life expectancy which is the case in several countries. This

will be discussed in the next section.

The top lefthand graph shows that the expected remaining lifetime decreases with age. E.g.,

at age 25 it is 64 years and 11 years at age 80. This decrease is intuitive as older people have

a higher chance of dying. Moreover, we notice that the impact of macro-longevity risk also

11 Negative (positive) macro-longevity shocks, i.e., negative (positive) random shocks in log central death

rates, have a positive (negative) impact on life expectancy and annuity values. To avoid confusion we denote

negative (positive) macro-longevity shocks by unexpected increases (decreases) in life expectancy.
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decreases with age. E.g., the difference between the 5th and 95th percentile at age 25 is 21

years and 6 years at age 80. There are two reasons for this decreasing impact. First, a longevity

shock has an impact on all future death probabilities. The expected remaining lifetime of

young cohorts depends on more future death probabilities compared to the expected remaining

lifetime of old cohorts. Second, the impact of both trend and estimation risk decreases with

age. The sensitivity of the death rates βx decreases with age implying a decreasing impact of

the trend risk. The variance of the estimation risk σ2ε,x generally decreases with age as there

is less uncertainty at higher death rates. This implies a decreasing impact of estimation risk.

The value of a deferred annuity (bottom lefthand graph) increases before retirement because

of two reasons:

• The probability that a participant reaches the retirement age increases with age.

• The value of a deferred annuity is lower for young cohorts compared to cohorts just

before retirement because of a larger discounting effect.

The relative change of the value of a (deferred) annuity as a result of a macro-longevity shock

is in the same order of magnitude for all age cohorts. Later in this paper we will see that this

explains the small welfare gains in case of collective risk sharing when the retirement age is

fixed.

Another important observation in Figure 3 is that the impact of macro-longevity risk on

the expected remaining lifetime and (deferred) annuity value is asymmetric. Unexpected

increases in life expectancy have a smaller impact than unexpected decreases in life expectancy.

This can be explained by the exponential distribution of death rates. A consequence of

this asymmetry is that the expectations of future survival probabilities and therefore also

the expected remaining lifetime and expected (deferred) annuity value are smaller than its

forecasted values. We present a derivation in Appendix A.1.

3 Sharing macro-longevity risk

The previous section discusses the modelling of macro-longevity risk. In this section we

consider the concept of collective risk sharing. Pension providers can create an internal market

for macro-longevity risk. We refer to this as collective risk sharing. Collective risk sharing

of macro-longevity risk can be welfare enhancing because the risk is not traded on a liquid

market and cohorts are affected differently by the risk.12 In fact, it creates a new asset that

can be priced and makes the market more complete.

12 Collective risk sharing can also be welfare enhancing if the risk is traded with future cohorts. In this paper

we abstract from this dimension.
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We discuss the concept of collective risk sharing in Section 3.1. We use a stylized two-agent

model in Section 3.2 to derive an analytical risk sharing solution. This model gives economic

intuition. Subsequently, we present a full model in Section 3.3 that consists of many cohorts

representing the population of a pension fund. We use this model to share macro-longevity

risk between cohorts in a pension scheme.

3.1 Risk sharing model

Suppose there are N agents with initial wealth Wi of agent i and agents are exposed to

an exogenous risk factor ỹi. Each individual’s preferences is represented by a utility function

Ui(.) with positive and decreasing marginal utility. Each agent maximizes the expected utility

of his consumption. In autarky consumption consists of wealth and the exposure to the risk

factor

Cai =Wi + ỹi i = 1, ...,N. (9)

In case of risk sharing the agents aggregate and subsequently redistribute the risk among

themselves through the continuous risk sharing function Ti(ỹ) = Ti(ỹ1, ..., ỹN). This leads to

the following expression for consumption in case of risk sharing

Csi =Wi + Ti(ỹ) i = 1, ...,N, (10)

under the condition that the aggregate risk is fully distributed over all agents

N

∑
i=1
Ti(ỹ) =

N

∑
i=1
ỹi. (11)

Risk sharing is Pareto improving compared to autarky if the welfare of at least one agent

improves

E[U(Csi )] > E[U(Cai )] for some i = 1, ...,N (12)

and all other agents do not become worse off

E[U(Csi )] ≥ E[U(Cai )] ∀i = 1, ...,N. (13)

A risk sharing rule {T1, ..., TN} is Pareto optimal if no Pareto improvement is possible, i.e.

there does not exist an alternative risk-sharing rule {T 1, ..., TN} such that

E[U(Wi + T i(ỹ))] ≥ E[U(Wi + Ti(ỹ))] ∀i = 1, ...,N, (14)

and for at least one agent strict inequality holds

E[U(Wi + T i(ỹ))] > E[U(Wi + Ti(ỹ))] for some i = 1, ...,N. (15)

A Pareto optimal risk-sharing rule yields the highest welfare gain compared to autarky.
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The theorem of Borch (1960) provides the following necessary and sufficient conditions for a

risk sharing rule {T1, ..., TN} to be Pareto optimal

U ′
i(Wi + Ti(ỹ)) = ciU

′
1(W1 + T1(ỹ)) ∀i = 1, ...,N,

N

∑
i=1
Ti(ỹ) =

N

∑
i=1
ỹi,

(16)

where c2, c3, ..., cN > 0 can be chosen arbitrarily and c1 = 1. This theorem shows that in a

Pareto-optimal risk-sharing rule the ratio of marginal utilities of two different agents is equal

to a constant. Borch (1960) also proofs that in a Pareto-optimal risk-sharing rule Ti(ỹ) is a

function of the aggregate risk
N

∑
i=1
ỹi only. This implies that in a Pareto-optimal risk-sharing

rule a pool must be formed of the aggregate risk of all participants.

The conditions for the existence of a Pareto-optimal risk-sharing rule in Borch’s theorem

in (16) are very weak. DuMouchel (1968) shows that if the utility functions are strictly

monotonic these conditions are satisfied and thus a Pareto-optimal risk-sharing rule exists.

So far we have not further specified the risk-sharing functions {T1, ..., TN}. A subset of all

possible risk-sharing functions {T1, ..., TN} is the collection of linear risk sharing rules13

Ti(ỹ) = t0,i + ηi
N

∑
i=1
ỹi. (17)

In this risk sharing rule the risk transfer ηi is the fraction of the aggregate risk that agent i

absorbs and t0,i is a constant risk compensation that agent i receives ex-ante. Some agents

receive a positive risk compensation which has to be financed by the other agents. Linear

risk sharing rules are easy to implement and the risk compensation t0,i can be interpreted

as a risk premium for absorbing risk. A Pareto-optimal risk-sharing rule is generally linear.

Huang and Litzenberger (1985) show that a Pareto optimal risk-sharing rule is linear if the

agents have the same cautiousness.14 This condition is satisfied when the individual utility

functions are member of the Hyperbolic Absolute Risk Aversion (HARA) class (Aase (2002)).

This is a general class of utility functions that are often used in practice.

In this research we focus on HARA utility functions. Pareto-optimal risk-sharing rules are in

this case linear. In the stylized two-agent model in Section 3.2 we assume exponential utility

which belongs to the HARA class and exhibits constant absolute risk aversion (CARA).

We use this utility function because of its analytical convenience and will show that the

Pareto-optimal risk-sharing rule is indeed linear in aggregate risk. In the full model we

assume power utility which also belongs to the HARA class and exhibits constant relative risk

aversion (CRRA). We assume power utility in the full model because power utility is more

13 Strictly speaking, these are affine risk sharing rules.
14 The cautiousness is the derivative of the reciprocal of absolute risk aversion. It measures how quickly the

coefficient of risk aversion increases as wealth goes down, see, e.g. Wilson (1968).
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in line with empirical evidence. Exponential utility implies increasing relative risk aversion

which contradicts empirical studies. Moreover, power utility has become the workhorse of

modern macroeconomics.

The conditions in (16) do not imply a unique Pareto-optimal risk-sharing rule since the

positive constants c2, c3, ..., cN can be chosen arbitrarily. The welfare gain from risk sharing

can be distributed over the agents in different ways. However, there must be an upper

limit to ci since utility decreases with increasing ci and agents cannot become worse off

in the Pareto-optimal risk-sharing rule. One can find a unique solution within the set of

Pareto-optimal risk-sharing rules by looking for an equilibrium. In this approach the agents

can trade in a fictitious market. This method is used by, e.g., Krueger and Kubler (2006),

Ball and Mankiw (2007) and Gottardi and Kubler (2011). An alternative way to find a unique

Pareto-optimal risk-sharing rule is by making use of a social planner and using a utility-based

fairness criterion. The social planner maximizes aggregate welfare and reallocates risk across

agents. A social planner is used by, e.g., Gordon and Varian (1988), Gollier (2008), Cui et al.

(2011) and Bovenberg and Mehlkopf (2014). The utility-based fairness criterion requires that

all agents experience the same welfare gain from risk sharing. This criterion is used by, e.g.,

Gollier (2008) and Bovenberg and Mehlkopf (2014). We use this criterion in the full model in

Section 3.3.

3.2 Stylized two-agent model

To understand how collective risk sharing works and leads to welfare gains we first consider a

stylized model in which we can derive the Pareto-optimal risk-sharing rule analytically. The

model consists of N = 2 agents which both have exponential utility with risk aversion α

U(Ci) = −
1

α
exp(−αCi). (18)

Exponential utility belongs to the HARA class so the Pareto-optimal risk-sharing rule is linear

in aggregate risk. For the sake of simplicity we assume both agents are exposed to the same

risk factor ỹ but with a different exposure, i.e., ỹ1 = β1ỹ and ỹ2 = β2ỹ. Risk ỹ represents the

unexpected component of a macro-longevity shock that affects both agents but in a different

way. We assume ỹ is normally distributed with zero mean and variance σ2.

We derive the Pareto-optimal risk-sharing rule {T1(ỹ), T2(ỹ)} by maximizing the expected

utility of agent 1 under the condition that agent 2 does not become worse off relative to

autarky

max
η,t0

E[U(W1 + T1(ỹ))] such that E[U(W2 + T2(ỹ))] ≥ E[U(W2 + ỹ2))] (19)

and T1(ỹ) + T2(ỹ) = ỹ1 + ỹ2,
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where we plug in consumption in autarky (9) and consumption in case of risk sharing (10).

The maximization can also be written as follows

max
η,t0

E[U(W1 + T1(ỹ))] such that E[U(W2 + (β1 + β2)ỹ − T1(ỹ))] ≥ E[U(W2 + β2ỹ))].

(20)

This maximization can be solved and yields the following Pareto-optimal risk-sharing rule

{T1(ỹ), T2(ỹ)}
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

T1(ỹ) = t0,1 + η1(β1 + β2)ỹ = −
1
8ασ

2(β1 + 3β2)(β1 − β2) +
1
2(β1 + β2)ỹ,

T2(ỹ) = t0,2 + η2(β1 + β2)ỹ =
1
8ασ

2(β1 + 3β2)(β1 − β2) +
1
2(β1 + β2)ỹ.

(21)

A proof is provided in Appendix A.2. We can conclude that the Pareto-optimal risk-sharing

rule is indeed linear in aggregate risk. This makes sense since exponential utility belongs to

the HARA class. As mentioned in Section 3.3 a Pareto-optimal risk-sharing rule is linear for

utility functions of the HARA class.

The optimal risk-sharing rule in (21) shows that in case of exponential utility the optimal

risk transfer ηi is independent of the wealth of the agents and is the same for both agents.

They both absorb half of the aggregate shock. Taking the expectation of the Pareto-optimal

risk-sharing rule leads to a constant risk compensation t0,i since risk factor ỹ has zero mean

⎧⎪⎪
⎨
⎪⎪⎩

E[T1(ỹ)] = t0,1 = −
1
8ασ

2(β1 + 3β2)(β1 − β2),

E[T2(ỹ)] = t0,2 =
1
8ασ

2(β1 + 3β2)(β1 − β2).
(22)

The constant risk compensation t0,i depends on the risk aversion α, the exposure of both

agents to the risk factor βi and the variance σ2 of the risk factor ỹ. The risk compensation

t0,1 is negative if β1 > β2. This implies that agent 1 has to pay a risk compensation to agent

2 if the exposure of agent 1 to the risk in autarky is larger compared to the exposure of agent

2. Because both agents absorb half of the aggregate shock, agent 2 wants to receive a positive

risk compensation in return.

The risk compensation t0,i determines how the welfare gain from risk sharing is distributed

among the agents. Because the inequality restriction is binding the welfare gain of risk sharing

goes completely to agent 1. The optimal risk-sharing rule in (21) is not necessarily the only

Pareto-optimal risk-sharing rule. In fact, there is generally a whole set of Pareto-optimal

risk-sharing rules. There are also Pareto-optimal risk-sharing rules in which both agents gain

from risk sharing. In that case t0,2 is higher and thus t0,1 must be lower as long as agent 1

does not become worse off.

We make the simplifying assumption that both agents are exposed to the same risk factor

ỹ. In case both agents are exposed to a different risk factor the optimal risk sharing rule is

still linear in aggregate risk. However, the equation of the risk compensation becomes more

complex.
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3.3 Collective risk sharing of macro-longevity risk: full model

We extend the stylized two-agent model of Section 3.2 to a full model with many cohorts

representing the population of a pension fund. In our full model, macro-longevity risk impacts

survival probabilities and therefore also retirement consumption in a non-linear way based on

the Lee-Carter model.

This full model consists of N = 70 cohorts. Cohort 1 is aged 25 and cohort 70 is aged

94.15 We base the number of participants ni in cohort i on the cumulative probability that

a participant is still alive at age i + 24. So old cohorts consist of less participants compared

to young cohorts. The lefthand graph in Figure 4 visualizes this population composition.

Participants have identical preferences given by a power utility function with risk aversion

γ = 516

U(Ci) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

C1−γ
i

1 − γ
if γ ≠ 1,

ln(Ci) if γ = 1.

(23)

Power utility belongs to the HARA class so the Pareto-optimal risk-sharing rule is linear in

aggregate risk. The total wealth Wi of a participant in cohort i depends on his or her age.

The righthand graph in Figure 4 visualizes the development of wealth over the life-cycle of a

participant. Wealth increases during the working period as the participant contributes to the

pension fund. Wealth at the start of the working period is positive because wealth consists of

financial wealth and human wealth (i.e., future pension contributions).17,18 Furthermore, we

initially assume that the participants retire at age R = 67, the interest rate - used to determine

the value a (deferred) annuity - equals r = 2%.

We consider a DC pension scheme. Consumption after retirement depends on the value of an

annuity. We assume the participant buys a variable annuity which value varies with future

survival probabilities.19 If for example life expectancy increases the annuity value increases.

This has a negative effect on consumption after retirement and implies that macro-longevity

risk is borne by the participant. The value of a (deferred) variable annuity atx, that pays 1

15 We exclude cohorts older than age 94 because the number of participants in these cohorts is very small and

therefore do not influence the results significantly.
16 Power utility has become the workhorse of macro-economics and finance and is in line with empirical studies

compared to exponential utility. We justify the assumption that agents have the same risk aversion γ

because collective risk sharing within a pension fund often occurs within a group of participants with similar

characteristics such as education, salary, etc.
17 Human wealth is equal to the present value of future pension contributions and not the present value of

future labor income because the pension contributions are fixed in our model.
18 We assume that labor income is fixed and the same for each cohort and each age. As a result, the impact of

macro-longevity risk on replacement rates is similar to the impact of macro-longevity risk on consumption.
19 Variable annuities can also vary with realized investment returns. Because we exclude investment risk, this

is not the case in this paper.
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Figure 4: Population composition (lefthand graph) and development of wealth over the

life-cycle of a participant (righthand graph).

dollar annually during retirement, for an individual of age x in year t is calculated as follows

atx =
M

∑
j=max (x,R)

1

(1 + r)j−x
cptx,j−x. (24)

In this formula R equals the retirement age, M is the maximum age an individual can reach

and cptx,i is the probability of still being alive after i years as in (5). We assume a constant

interest rate r.

For ease of reference we denote the value of a (deferred) annuity in (24) by atx = ai. A

macro-longevity shock impacts future survival probabilities which influence the value of a

(deferred) annuity as stated in (24). The value of a (deferred) annuity changes for cohort i

from ai to ãi due to a macro-longevity shock in the Lee-Carter model. The expected annual

consumption after retirement in autarky Cai for cohort i after a shock is given by

Cai =
Wi

ãi
. (25)

To determine the impact of macro-longevity risk on consumption we calculate for each cohort

how much money is needed (or is left) to fully compensate the impact of a macro-longevity

shock.20 We denote this by ỹi

Wi

ai
=
Wi + ỹi
ãi

ỹi =Wi(
ãi
ai
− 1). (26)

ỹi represents the amount of money to offset the effect of a macro-longevity shock on consumption

in autarky. If the annuity value increases (decreases) due to an unexpected increase (decrease)

20 In this paper we assume that consumption before retirement is fixed, i.e., a macro-longevity shock can only

be absorbed by changing consumption after retirement. In case a participant can also change consumption

before retirement, the impact of a macro-longevity shock on the consumption level after retirement will be

smaller for workers.
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in life expectancy, ỹi is positive (negative) and money is needed (left). ỹi is not the same for

each cohort i because the impact of a macro-longevity shock on future death rates depends

on age. We can calculate the total money needed (or left) to fully compensate the impact of

a macro-longevity shock for all N cohorts. We denote this by ỹT

ỹT =
N

∑
i=1
niỹi, (27)

where ni is the number of participants in cohort i. Macro-longevity risk is shared by distributing

the aggregate macro-longevity shock ỹT among cohorts. Because power utility belongs to the

HARA class the Pareto-optimal risk-sharing rule is linear. Each participant absorbs part of

the aggregate macro-longevity shock ηi and receives (or pays) a risk compensation t0,i as in

(17). Consumption in case of risk sharing thus equals

Csi =
Wi + ỹi − ηiỹT − t0,i

ãi
. (28)

We determine the Pareto-optimal risk-sharing rule by making use of a social planner who

maximizes aggregate welfare and reallocates risk across agents

max
η1,η2,...ηN

t0,1,t0,2,...t0,N

N

∑
i=1
niδiE[U(Csi )], (29)

where the following restrictions should be satisfied

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

N

∑
i=1
niηi = 1,

N

∑
i=1
nit0,i = 0.

(30)

The first restriction makes sure that the aggregate risk is fully distributed over all agents.

The second restriction guarantees that the total risk compensation that participants receive

is paid by the other participants. The parameter δi in (29) represents the discount factor

that the social planner uses to weigh the relative importance of the cohorts. As a result

the maximization in (29) does not yield a unique Pareto-optimal risk-sharing rule. There is

no unique Pareto-optimal risk-sharing rule since the welfare gain from risk sharing can be

distributed over the participants in different ways. In the maximization in (20) a unique

Pareto-optimal risk-sharing rule is found that allocates the complete welfare gain of risk

sharing to agent 1. Such an allocation is not the most desirable risk-sharing agreement in

a pension scheme. We use a utility-based fairness criterion to find a unique Pareto-optimal

risk-sharing rule. We determine δi such that the welfare gain from risk sharing relative to

autarky is the same for all participants in the pension scheme.

4 Retirement age policies

The significant increase in life expectancy during the last decades had a major impact on the

sustainability of pension systems. As a response several countries are linking the state pension

17

 Electronic copy available at: https://ssrn.com/abstract=3311420 



age to life expectancy developments. In the United Kingdom for example the government plans

to link the state pension age at future dates to the projected longevity of the population in such

a way that people receive state pension during a fixed proportion of adult life (Hammond et al.

(2016)). Under this policy both the working and retirement period increase if life expectancy

increases. In the Netherlands the retirement age is linked to life expectancy in a different way.

The Dutch government implemented a law that links the retirement age to the remaining life

expectancy of the population at age 65. Under this policy the absolute length of the retirement

period is fixed and independent of life expectancy while the working period increases if life

expectancy increases.

In this paper we focus on occupational pension schemes. The retirement age in occupational

pension schemes is often equal to the state pension age. As a consequence, the retirement age

policy of the government also impacts the retirement age in occupational pension schemes and

thus the ability to share macro-longevity risk in occupational pension schemes. We consider

three policies:

1. Fixed retirement age (FRA): the retirement age is fixed, i.e., the retirement age does

not change after macro-longevity shocks. In this policy the length of the working period

is constant. This policy supports the belief that if people live longer, they extent their

retirement period. In most countries, for example in the United States and Australia,

the retirement age is not linked to life expectancy.

2. Partial adjustment of the retirement age (PARA): the retirement age automatically

adjusts to life expectancy developments in a such a way that retirement consumption

remains the same.21 This means, e.g., that if life expectancy increases (decreases) with

12 months, the retirement age should increase (decrease) with roughly 9 months.22 In

this policy consumption after retirement is constant. The adjustment only holds for

working participants, since retirees cannot adjust their retirement age anymore. This

policy is close to the retirement age policy in the United Kingdom.23

3. Full adjustment of the retirement age (FARA): the retirement age automatically

keeps up fully with life expectancy changes. This means, e.g., that if the remaining life

expectancy at retirement increases (decreases) with 12 months, the retirement age also

increases (decreases) with 12 months. In this policy the length of the retirement period

is constant. The adjustment holds for working participants only, since retirees cannot

21 There are also countries in which the retirement age is not automatically linked to life expectancy but the

government decides to increase the retirement age based on life expectancy improvements incidentally. We

do not investigate such a policy.
22 The exact increase (decrease) does not only depend on the size of the longevity shock but also on the impact

of the longevity shock on survival probabilities at different ages and the life expectancy before the longevity

shock.
23 The retirement age adjustment in the UK proposal depends on the proportion of adult life that people

receive state pension.
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adjust their retirement age anymore. This policy supports the belief that if people live

longer, they increase their labor supply by extending their working period. This policy

is similar to the retirement age policy in the Netherlands.24

Stevens (2017) investigates the effect of different retirement age policies on the distribution

of the (forecasted) retirement age. He concludes that if the retirement age is linked to life

expectancy macro-longevity risk is effectively hedged. However, such a policy also leads to

substantial uncertainty in the retirement age and length of the retirement period.

Working Retirement Retirement Value Wealth at

period period consumption annuity retirement

FRA constant ++ - ++ constant

PARA + + constant + +

FARA ++ constant + - ++

Table 1: Impact of an unexpected increase in life expectancy on several variables for working

participants in case of different retirement age policies.

Table 1 presents the impact of an unexpected increase in life expectancy on several variables

for the three retirement age policies. Consumption after retirement is determined by the value

of a (deferred) annuity and accumulated wealth at retirement (see (25)). The righthand graph

in Figure 4 shows the development of wealth over the life-cycle in case of a fixed retirement

age. If the retirement age is linked to life expectancy the development of wealth over the

life-cycle is different because the participant accrues more (less) wealth by paying pension

premia for a longer (shorter) period.25 The table presents the impact for working participants

only because retirees cannot adjust their retirement age as response to longevity shocks. In

case of an unexpected decrease in life expectancy, the signs in Table 1 revert.

In case of a fixed retirement age the length of the working period is constant. As a result the

(expected) length of the retirement period increases in case of an unexpected increase in life

expectancy. The annuity value increases as a result of higher survival probabilities. Wealth

at retirement remains the same. As a result retirement consumption will decrease.

In case of a partial adjustment of the retirement age both the working and retirement period

are extended. The annuity value increases as a result of higher survival probabilities. The

wealth at retirement also increases because the participant will work longer. The annuity

24 The Dutch law states that the retirement age R is only adjusted in case the remaining life expectancy at

age 65 increases but it remains the same if it decreases. In this paper we assume a symmetric rule, i.e., the

retirement age is adjusted in case of both positive and negative shocks.
25 We assume that the labor market functions perfectly so participants do not experience any difficulties with

staying employed.
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value and wealth at retirement increase such that consumption after retirement remains the

same.

If the retirement age is fully adjusted the length of the retirement period is constant. The

(expected) length of the working period increases in case of an unexpected increase in life

expectancy. The annuity value is lower than before the longevity shock. Higher survival

probabilities have a positive impact on the annuity value, but later retirement has a negative

impact on the annuity value. It turns out that the latter effect outweighs. The wealth

at retirement increases because the participant will work longer. As a result, retirement

consumption will increase.

We use exogenous rules in the retirement age policies. An alternative is an endogenous

retirement age. The participant optimizes his retirement age based on realized life expectancy

improvements. In that case it is necessary to include leisure time besides consumption in the

utility function to take the labor-leisure trade-off into account. Otherwise a high retirement

age would always be optimal because a shorter retirement period implies a higher consumption

after retirement. Cocco and Gomes (2012) investigate the impact of macro-longevity risk on

the optimal saving and retirement decision in an individual life-cycle model. They conclude

that individuals decide to retire later even if this entails a utility cost in terms of foregone

utility of (additional) leisure. Although we do not explicitly model the labor-leisure trade-off

in this paper, the retirement age policies represent different preferences regarding consumption

and leisure. In case of a fixed retirement age, a life expectancy increase implies a lengthening

of the retirement period (leisure) at the expense of the consumption level. In case of a

partial adjusted of the retirement age both consumption and leisure (relative to labor) remain

approximately equal. A full adjustment of the retirement age implies a higher consumption

level at the expense of leisure.

5 Results

In this research we quantify the welfare gains from collective risk sharing in terms of aggregate

certainty equivalent consumption after retirement. We use the Lee-Carter model to model

macro-longevity risk using mortality data of Dutch females.26 Table 2 presents the aggregate

welfare gains for the three retirement age policies discussed in Section 4.

We observe that for each retirement age policy collective risk sharing of macro-longevity risk

is welfare improving compared to autarky. The design of the retirement age policy impacts

26 We focus on risk sharing between different cohorts of the same population. We do not investigate risk sharing

between the sexes or between different populations. Sharing macro-longevity risk between sexes or different

populations is potentially welfare improving but is out of the scope of this paper.
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Fixed retirement age (FRA) 0.3%

Partial adjustment retirement age (PARA) 0.5%

Full adjustment retirement age (FARA) 2.7%

Table 2: Welfare gains in terms of aggregate certainty equivalent consumption after

retirement from sharing macro-longevity risk measured on a 10-year horizon.

the size of welfare gains from sharing macro-longevity risk. In case of a fixed retirement age,

the welfare gain equals 0.3 percent. This relatively small welfare gain is a result of the fact

that in this policy the impact of macro-longevity risk on retirement consumption for different

cohorts is more or less equal (Figure 3). As a result, the welfare gain from risk sharing is

limited. In case the retirement age is partially adjusted the welfare gain from risk sharing is

higher. This is a result of the fact that the expected retirement consumption of workers is

not affected by macro-longevity shocks. In case of a full adjustment of the retirement age the

aggregate welfare gain increases significantly. This is a result of the large risk bearing capacity

of workers. They adjust their labor supply as a hedge against macro-longevity shocks. This

increases the risk appetite of the workers to provide insurance to retirees.

In this research we measure welfare gains of sharing macro-longevity risk and not welfare

gains of different retirement age policies since the retirement age policy is given for both

autarky and risk sharing. We do not focus on the suitability of retirement age policies. This

is a different research question and requires the inclusion of leisure time besides consumption

in the utility function to take the labor-leisure trade-off into account.

Figure 5 (lefthand graph) visualizes the optimal risk transfer relative to autarky for a participant

in cohort i as a percentage of total risk. A positive risk transfer for cohort i means that

participants in cohort i absorb risk of other cohorts. A negative risk transfer means that the

own exposure to macro-longevity risk is (partly) transferred to other cohorts.27 In case of a

fixed retirement age the risk transfer increases with age for the workers until retirement and

decreases with age for retirees. Macro-longevity risk of the young workers and old retirees

is (partly) absorbed by the other cohorts. The development of wealth over the life-cycle

(righthand graph in Figure 4) primarily explains this shape. Cohorts who have relatively

more wealth can absorb more risk. The risk transfer rule in case of a fixed retirement

age significantly differs from the risk transfer rule in case the retirement age is adjusted to

macro-longevity shocks. The risk transfer rule in case the retirement age is partially adjusted

is very similar to the risk transfer rule in case the retirement age is fully adjusted. The workers

absorb risk and the retirees transfer risk. This makes sense because the workers adjust their

27 The sum of risk transfers in the graph is not exactly equal to zero because each cohort does not consist of

an equal number of participants.
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labor supply to macro-longevity shocks. As a result, they are able to absorb risk of the

retirees.
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Figure 5: Optimal risk transfer relative to autarky for all cohorts as percentage of total risk

(lefthand graph) and corresponding risk compensation (righthand graph) in case of sharing

macro-longevity risk measured on a 10-year horizon. A positive (negative) risk transfer for

cohort i means that participants in cohort i absorb risk of (transfer risk to) other cohorts. A

positive (negative) risk compensation for cohort i means that participants receive (pay) a risk

compensation.

The righthand graph in Figure 5 displays the risk compensation t0,i corresponding to the

optimal risk transfer for a participant in cohort i under the utility-based fairness criterion

(lefthand graph).28 A positive risk compensation for cohort i means that participants receive

a risk compensation. A negative risk compensation for cohort i means that participants pay

a risk compensation. In general, cohorts who absorb risk from other cohorts receive a risk

compensation and cohorts who transfer risk have to pay a risk compensation. However, this

does not hold if the retirement age is fully adjusted. Young cohorts absorb risk from other

cohorts but do not receive a risk premium; the risk premium is even negative. Under this

policy workers adjust their labor supply as a hedge against macro-longevity shocks. This

implies a reverse effect of macro-longevity shocks for workers and retirees (Table 1). As

a result, a positive risk compensation is not required for young cohorts to absorb risk of

retirees. A final observation is the peak in the risk compensation around age 66 in case

of a fully adjusted retirement age. This peak is due to the fact that cohorts just before

retirement cannot fully adjust their retirement age in case of an unexpected decrease in life

expectancy, i.e., the retirement age cannot be lower than their current age. As a result, the

certainty equivalent consumption of these cohorts is relatively high in autarky so risk sharing

is less welfare improving for these cohorts. Therefore, these cohorts require a higher risk

28 The sum of risk compensations in the graph is not exactly equal to zero because each cohort does not consist

of an equal number of participants.
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compensation.

We consider macro-longevity risk on a 10-year horizon. The welfare gains from sharing

macro-longevity risk over the whole life-cycle are most likely higher. Another sidenote is

that this paper applies a first-best risk-sharing rule as its benchmark for evaluating welfare

effects. In practice, however, the first-best risk-sharing rule may not always be feasible. Policy

makers might want to limit the maximum risk a participant can absorb to prevent very large

wealth transfers in case of extreme macro-longevity shocks.

5.1 Sensitivity analyses

In this section we verify whether the welfare gains and risk-sharing rules are sensitive to

mortality data and model assumptions by performing three types of sensitivity analyses:

1. Alternative mortality data: macro-longevity risk in the Lee-Carter model depends

on the parameters in (2) and (6) that are calibrated using historical mortality data. We

investigate the impact of alternative mortality data on welfare gains from risk sharing

and corresponding risk-sharing rule.

2. Alternative population compositions: welfare gains from sharing macro-longevity

risk also depend on the population composition. We will investigate the impact

of alternative population compositions on welfare gains from risk sharing and

corresponding risk-sharing rule.

3. Alternative model macro-longevity risk: instead of macro-longevity risk in the

Lee-Carter model we assess the impact of alternative shocks in death rates on welfare

gains from risk sharing and corresponding risk-sharing rule.

5.1.1 Alternative mortality data

Macro-longevity risk in the Lee-Carter model depends on the parameters in (2) and (6).

In our main analysis we calibrate the parameters using historical mortality data of Dutch

females. Using alternative mortality data changes the parameters and therefore also the size

and distribution of macro-longevity shocks.

The welfare gains from risk sharing using alternative mortality data are presented in Table 3.

We look at Dutch males, US females and US males. In case of a fixed retirement age or partial

adjustment of the retirement age, the welfare gains do not change significantly. However, in

case the retirement age is fully adjusted welfare gains from risk sharing are lower compared to

the mortality data of Dutch females. This especially holds for mortality data of US females.

This lower welfare gain is caused primarily by lower volatility parameters in (7). A lower

volatility implies smaller risk and therefore lower welfare gains from risk sharing.
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Mortality data Dutch Dutch US US

females males females males

Fixed retirement age (FRA) 0.3% 0.2% 0.2% 0.3%

Partial adjustment retirement age (PARA) 0.5% 0.5% 0.2% 0.3%

Full adjustment retirement age (FARA) 2.7% 1.9% 0.7% 1.5%

Table 3: Welfare gains in terms of aggregate certainty equivalent consumption after

retirement from sharing macro-longevity risk measured on a 10-year horizon for alternative

mortality data.

Figure 6 visualizes the optimal risk transfer relative to autarky as percentage of total risk.

The black lines represent the optimal risk transfer rule using the mortality data of Dutch

females and the grey lines for the alternative mortality data. We can conclude that for each

retirement age policy the optimal risk transfer rule is robust to the alternative mortality data

we consider.
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Figure 6: Optimal risk transfer relative to autarky as percentage of total risk in case of

sharing macro-longevity risk measured on a 10-year horizon. The black lines represent the

risk transfer rules based on Dutch females and the grey lines represent the risk transfer rules

using alternative mortality data.

5.1.2 Alternative population compositions

We determined welfare gains in Table 2 and risk transfers and risk compensations in Figure 5

for a population composition of an entire country (lefthand graph in Figure 4). In practice the

population composition of a pension fund is generally not equal to this standard population

composition. Therefore, it is interesting to also consider alternative population compositions:

a population composition of a green and grey pension fund. We assume that the green pension

fund has a relatively young population. We approximate this by assuming that the number

of participants in a cohort decreases with 1 percent per age year compared to the standard
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population composition. In the grey pension fund the number of participants in a cohort

increases with 1 percent per age year compared to the standard population composition. The

standard and alternative population compositions are displayed in Figure 7.
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Figure 7: Different population compositions: a standard, green and grey pension fund.

Population composition Standard Green Grey

Fixed retirement age (FRA) 0.3% 0.3% 0.3%

Partial adjustment retirement age (PARA) 0.5% 0.4% 0.7%

Full adjustment retirement age (FARA) 2.7% 2.2% 2.7%

Table 4: Welfare gains in terms of aggregate equivalent consumption after retirement

from sharing macro-longevity risk measured on a 10-year horizon for alternative population

compositions.
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Figure 8: Optimal risk transfer relative to autarky for each cohort as percentage of total

risk in case of sharing macro-longevity risk measured on a 10-year horizon. The black lines

represent the original risk transfers and the grey lines represent the optimal risk transfers

using alternative population compositions.

Table 4 presents the welfare gains from risk sharing using alternative population compositions.
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The welfare gains are not significantly different from the welfare gains for the standard

population composition, even if the retirement age is fully adjusted. Figure 8 visualizes

the optimal risk transfer relative to autarky as percentage of total risk. The black lines

represent the optimal risk transfer rules using the original population composition and the

grey lines represent the risk transfer rules using alternative population compositions. The

shape of the risk transfer rule is reasonably robust to the population composition but the

percentage of total risk an individual participant absorbs or transfers can be different in

case of alternative population compositions. A different population composition leads to a

different ratio between the individual macro-longevity shock and total macro-longevity shock.

This impacts the optimal risk transfer as percentage of total risk.

5.1.3 Alternative model macro-longevity risk

Several academics use the Lee-Carter model to model macro-longevity risk. Moreover, it is

the basis of several mortality table forecasts in practice. However, the model is not a perfect

representation of reality because there is uncertainty about structural breaks. For example,

medical innovations can cause structural breaks that are not captured by the Lee-Carter

model. Therefore it is interesting to also look at the impact of alternative shocks in the death

rates.

There is no scientific consensus on the development of future survival probability at old

ages. Buettner (2002) suggests that there are two alternative views about the future survival

probability at old ages: compression versus expansion. In case of mortality compression

mortality continues to decline over a widening range of adult ages, but meets natural limits

for very advanced ages. This development implies that the survival probability approaches

a rectangle (Figure 9). Einmahl et al. (2017) and Dong et al. (2016) find evidence for the

existence of a maximum age. In case of mortality expansion mortality continues to decline

for all ages, i.e., there is no maximum age. Wilmoth (2000) and Oeppen and Vaupel (2002)

argue that there is indeed no maximum age. Wilmoth (2000) states that, based on available

demographic evidence, the human life span shows no sign of approaching a certain limit

imposed by biology or other factors. There are even scientists who believe in the possible

realization of longevity escape velocity. In this scenario death rates fall so fast that people’s

remaining life expectancy increases with time because therapies restore health faster than the

rate of body deterioration due to biological ageing (De Grey (2004)).

The development of future mortality in the Lee-Carter model is in line with the mortality

compression view. The sensitivity of the death rates to the time trend decreases in age x

to almost zero at very high ages. An alternative shock in death rates is the macro-longevity

shock in the Solvency II framework for insurers. The Solvency II capital requirements for

longevity risk are determined by applying a uniform shock, i.e., a 20 percent decrease, to all
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Age

Compression

Age

Expansion

Figure 9: Different views of future survival probability: compression (lefthand graph) and

expansion (righthand graph).

future death probabilities qx,t.
29 For mortality risk the capital requirements are determined

by applying an increase of 15 percent to all future death probabilities. The longevity shock in

the Solvency II framework is in line with the expansion view because all death probabilities

decrease at the same rate. Figure 10 visualizes both types of shocks, i.e., macro-longevity

shocks in the Lee-Carter model and in the Solvency II framework. The graphs show that the

development of future mortality in the Lee-Carter model is in line with the compression view

and the Solvency II framework is in line with the expansion view.
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Figure 10: Impact of several consecutive macro-longevity shocks in the Lee-Carter model

(lefthand graph) and in the Solvency II framework (righthand graph) on the survival

probability.

The shocks for longevity and mortality risk in the Solvency II framework are deterministic,

i.e., no stochastic mortality model is used to determine the distribution of future death rates.

Because we have to make an assumption about the distribution of future death rates when

sharing macro-longevity risk, we assume that the shocks for longevity and mortality risk both

29 These capital requirements are based on the 99.5% VaR of the available capital over a one-year horizon.

27

 Electronic copy available at: https://ssrn.com/abstract=3311420 



Age
30 40 50 60 70 80 90

Y
e
a
rs

10

20

30

40

50

60

70

Absolute impact on
expected remaining lifetime

5th percentile
50th percentile
95th percentile

Age
30 40 50 60 70 80 90

P
e
rc

e
n
ta

g
e
 c

h
a
n
g
e

-40%

-30%

-20%

-10%

  0%

 10%

 20%

 30%

 40%

Relative impact on
expected remaining lifetime

5th percentile
95th percentile

Age
30 40 50 60 70 80 90

E
u
ro

s

0

5

10

15

20

25

Absolute impact on
value (deferred) annuity

5th percentile
50th percentile
95th percentile

Age
30 40 50 60 70 80 90

P
e
rc

e
n
ta

g
e
 c

h
a
n
g
e

-40%

-30%

-20%

-10%

  0%

 10%

 20%

 30%

 40%

Relative impact on
value (deferred) annuity

5th percentile
95th percentile

Figure 11: Impact of macro-longevity risk in the Solvency II framework on the expected

remaining lifetime and the value of a (deferred) variable annuity for a Dutch female in 2014 in

absolute terms (lefthand graphs) and relative change (righthand graphs) assuming a constant

interest rate of 2% and fixed retirement age R = 67.

occur with probability 50%. Figure 11 visualizes the impact of those shocks on the expected

remaining lifetime and the value of a (deferred) variable annuity.

We cannot compare the size of the impact of macro-longevity risk in the Lee-Carter model

(Figure 3) and Solvency II framework (Figure 11) directly, because the shocks in the Lee-Carter

model are on a 10-year horizon while the shocks in the Solvency II framework are one-off

shocks. However, we can still compare the distribution of macro-longevity risk over different

cohorts in both models. We notice that the relative change of the expected remaining lifetime

and (deferred) annuity value per cohort (righthand figures) differ significantly. While the

relative change in the Lee-Carter model decreases with age, it increases with age in the

Solvency II framework. This is due to the fact that the impact of a uniform improvement of

death probabilities on survival probabilities is much higher at high ages compared to low ages

because death probabilities are higher at high ages. As a result, the relative change increases

with age in the Solvency II framework. In the Lee-Carter model the impact of macro-longevity

risk on death probabilities decreases with age.

Table 5 shows welfare gains from risk sharing in the Solvency II framework for the three
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Model LC SII

Fixed retirement age (FRA) 0.3% 0.3%

Partial adjustment retirement age (PARA) 0.5% 0.3%

Full adjustment retirement age (FARA) 2.7% 0.4%

Table 5: Welfare gains from sharing macro-longevity risk in terms of aggregate certainty

equivalent consumption after retirement in the Lee-Carter model and in the Solvency II

framework.

retirement age policies. We cannot compare the size of welfare gains in the Lee-Carter model

and Solvency II framework directly because both shocks have a different interpretation

as mentioned above. In the Solvency II framework the welfare gain does not increase

significantly in case of a full adjustment of the retirement age. Recall that the high welfare

gain in case the retirement age is fully adjusted in the Lee-Carter model is a result of the

hedge effect of the adjusted labor supply to macro-longevity shocks for workers. In the

Solvency II framework the impact of macro-longevity risk on the expected remaining lifetime

(Figure 11) is small for workers. As a result, the hedge effect is much smaller in the Solvency

II framework compared to the Lee-Carter model.

Figure 12 visualizes the optimal risk transfer relative to autarky for a participant in cohort i

as percentage of total risk. We can conclude that for each retirement age policy the optimal

risk transfer rule is reasonably robust to the alternative mortality model.
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Figure 12: Optimal risk transfer relative to autarky as percentage of total risk for different

retirement age policies. The black lines represent the original risk transfers in the Lee-Carter

model and the grey lines represent the optimal risk transfers in the Solvency II framework.
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6 Conclusion and policy evaluation

Pension funds face macro-longevity risk or uncertainty about future mortality rates. We

analyze macro-longevity risk sharing between cohorts in a pension scheme as a risk management

tool. We explore this economic problem as macro-longevity risk is not traded on a liquid

market and cohorts are affected differently by macro-longevity risk. We derive the optimal

risk-sharing rule and welfare gains from ex-ante Pareto-optimal risk-sharing rules for different

retirement age policies.

We find that the design of the retirement age policy has a large impact on both the optimal

risk-sharing rule and welfare gains from sharing macro-longevity risk. In case the retirement

age is fixed, welfare gains from sharing macro-longevity risk on a 10-year horizon are between

0.2 percent and 0.3 percent of certainty equivalent consumption after retirement. Under this

policy, the impact of macro-longevity risk on retirement consumption for different cohorts is

more or less equal. Young cohorts do not absorb macro-longevity risk of old cohorts in the

optimal risk transfer rule. As a result, welfare gains from risk sharing are limited.

Some countries link the retirement age to life expectancy developments. If the retirement

age is linked to life expectancy welfare gains from sharing macro-longevity risk measured on

a 10-year horizon are substantially higher, up to 2.7 percent. The risk bearing capacity of

workers is larger, because they can use their labor supply as a hedge against macro-longevity

shocks. As a result, workers absorb risk from retirees in the optimal risk transfer rule because

the human capital of workers increases if they work longer. As a result, the welfare gain from

risk sharing increases. The size of welfare gains from risk sharing is sensitive to the mortality

data and model assumptions. This is a result of a different volatility of macro-longevity risk

when using different mortality data and a different distribution of macro-longevity risk over

cohorts. However, the optimal risk transfer rules are reasonably robust to the alternative

mortality data and model assumptions.

The findings in this paper are relevant for pension policy, especially because of the general

trend of transferring risks to pension participants. First, we determine the optimal

risk-sharing rule for macro-longevity risk in this paper. In practice macro-longevity risk is

shared in specific ways. In DB schemes and pooled annuity schemes, e.g., macro-longevity

risk is usually shared uniformly. The results in this paper show that uniform risk sharing

is suboptimal. Moreover, it is sometimes argued that workers can provide insurance to

macro-longevity risk of retirees. The results in this paper show that such a risk distribution

is optimal only in case the retirement age is linked to life expectancy. If the retirement age

is fixed it is not optimal for young cohorts to absorb risk of retirees. Second, we determine

a fair risk compensation for cohorts who absorb macro-longevity risk of other cohorts using

30

 Electronic copy available at: https://ssrn.com/abstract=3311420 



a utility-based fairness criterion. In practice, there is usually no risk compensation for

absorbing macro-longevity risk.

Sharing macro-longevity risk results in high welfare gains in case of a full adjustment of the

retirement age. In this paper we do not want to make a statement about the suitability of

retirement age policies in this paper. This is a different research question and involves a

broader perspective. Healthy life expectancy and practical implementation are for example

relevant but outside the scope of this paper. It is up to policy makers to decide whether

it is appropriate to link the retirement age to life expectancy. The goal of this paper is to

determine the optimal way to share macro-longevity risk between cohorts given a certain

retirement age policy.

Sensitivity analyses show that the size of welfare gains depends on the population composition

and the mortality data. For example, welfare gains from sharing macro-longevity risk are

smaller for mortality data US compared to Dutch mortality data as a result of a lower volatility.

An interesting area for future research is to investigate sharing macro-longevity risk between

pension funds or even between countries. Van Binsbergen et al. (2014) propose to share

risks between heterogeneous pension funds by trading pension guarantees. Bodie and Merton

(2002) propose swaps to achieve risk-sharing benefits of broad international diversification.

Our framework is useful to further develop such instruments.
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A Appendix

A.1 Expected survival probability

The random shocks in (7) in the log central death rates are normally distributed with mean

zero, i.e., E[βxηt + εx,t] = 0. The following holds for the expected survival probability

E[px,t] ≈ E[exp(−µx,t)] = E[exp(− exp(αx + βxκt + εx,t))] (31)

E[exp(− exp(αx + βxκt + εx,t))] ≤ E[exp(− exp(αx + βxc + βxκt−1 + βxηt + εx,t))]

= exp(− exp(αx + βxc + βxκt−1 +E[βxηt + εx,t]))

exp(− exp(αx + βxc + βxκt−1 +E[βxηt + εx,t])) ≤ exp(− exp(αx + βxc + βxκt−1) = p̂x,t,

using Jensen’s inequality E[f(x)] ≤ f(E[x]) with f(x) = exp(− exp(x)) being a concave

function for x ≤ 0.

A.2 Derivation Pareto optimal risk-sharing rule in stylized two-agent model

The Lagrange function of the maximization problem in (20) equals

L(T,λ) = E[U(W1 + T1(ỹ)) + λ(U(W2 + (β1 + β2)ỹ − T1(ỹ)) −U(W2 + β2ỹ))]. (32)

Because T1(ỹ) is a continuous function we take the Fréchet-derivative

DTL(T,λ).τ = E[(U ′
(W1 + T1(ỹ)) + λU

′
(W2 + (β1 + β2)ỹ − T1(ỹ)))τ(ỹ)]. (33)

The first order condition should be zero for each pertubation τ(ỹ). This is only possible if

the following holds for all values of ỹ

U ′
(W1 + T1(ỹ)) = λU

′
(W2 + (β1 + β2)ỹ − T1(ỹ)) ∀ỹ. (34)

This is a non-linear equation which can be solved for {T1(ỹ), T2(ỹ)}. As mentioned in Section

3.2 we assume both agents have exponential utility with risk aversion α. We plug this utility

function into the first order condition

exp(−α(W1 + T1(ỹ)) = λ exp(−α(W2 + (β1 + β2)ỹ − T1(ỹ))

−α(W1 + T1(ỹ)) = ln(λ) − α(W2 + (β1 + β2)ỹ − T1(ỹ))

−2αT1(ỹ) = ln(λ) − α(W2 −W1 + (β1 + β2)ỹ)

T1(ỹ) = −
1

2

ln(λ)

α
+

1

2
(W2 −W1 + (β1 + β2)ỹ). (35)

Because the utility function is strictly increasing, the inequality restriction in (20) is binding

E[(U(W2 + (β1 + β2)ỹ − T1(ỹ))] = E[U(W2 + β2ỹ)] (36)

E[ − 1

α
exp(−α(W2 + (β1 + β2)ỹ − T1(ỹ)))] = E[ −

1

α
exp(−α(W2 + β2ỹ))].
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Plugging in (35) yields

E[ − 1

α
exp ( − α(W2 + (β1 + β2)ỹ +

1

2

lnλ

α
−

1

2
(W2 −W1 + (β1 + β2)ỹ)))] = E[ −

1

α
exp(−α(W2 + β2ỹ))] (37)

E[ − 1

α
exp ( −

1

2
lnλ − α(

1

2
(W1 +W2) +

1

2
(β1 + β2)ỹ))] = E[ −

1

α
exp(−α(W2 + β2ỹ))]

−
1

α
E[ exp ( −

1

2
lnλ)]E[ exp ( − α

1

2
(W1 +W2))]E[ exp ( − α

1

2
(β1 + β2)ỹ)] = −

1

α
E[ exp(−αW2)]E[ exp(−αβ2ỹ)]

1
√

λ
exp ( −

1

2
αW1) exp ( −

1

2
αW2) exp (

1

8
α2

(β1 + β2)
2σ2

) = exp(−αW2) exp (
1

2
α2β2

2σ
2
)

exp (
1

2
α(W2 −W1)) exp (

1

8
α2β2

1σ
2
+

1

4
α2β1β2σ

2
−

3

8
α2β2

2σ
2
) =

√

λ

exp (α(W2 −W1)) exp (
1

4
α2β2

1σ
2
+

1

2
α2β1β2σ

2
−

3

4
α2β2

2σ
2
) = λ

Plugging λ into (35) yields

T1(ỹ) = −
1

2
(W2 −W1) +

3

8
αβ22σ

2
−

1

8
αβ21σ

2
−

1

4
αβ1β2σ

2
+

1

2
(W2 −W1) +

1

2
(β1 + β2)ỹ (38)

= −
1

8
ασ2(β1 + 3β2)(β1 − β2) +

1

2
(β1 + β2)ỹ,

and the optimal risk-sharing rule for agent 2 equals

T2(ỹ) =
1

8
ασ2(β1 + 3β2)(β1 − β2) +

1

2
(β1 + β2)ỹ. (39)

36

 Electronic copy available at: https://ssrn.com/abstract=3311420 



A.3 Definitions

Parameter Definition

αx Age-specific constant in log central death rates

Annuity value (atx) Value of an annuity that pays 1 dollar annually during retirement for an

individual of age x in year t

Autarky Situation without risk sharing

Cai Consumption after retirement in autarky for a participant in cohort i

Csi Consumption after retirement in case of risk sharing for a participant in cohort i

Certainty equivalent Guaranteed consumption level that someone would accept rather than a

consumption higher uncertain consumption

Central death rate (µx,t) Average yearly death rate of an individual of age x in year t

Cumulative survival Probability that an individual of age x in year t is still alive after i years

probability (cptx,i)

c Drift in time trend

Equivalent variation (EQVi) Amount of wealth which agent i should be given ex-ante in autarky to

obtain the same ex-ante welfare in case of risk sharing

Uncertainty in death rates (εx,t) Random variation in log central death rates

Fixed retirement age (FRA) Constant retirement age

Full adjustment retirement Retirement age keeps up fully with life expectancy

age (FARA)

Longevity risk Risk that people live longer than expected

Macro-longevity risk Uncertainty about future mortality rates

Micro-longevity risk Uncertainty about individual time of death

Mortality risk Risk that people live shorter than expected

One-year death Probability that an individual of age x and alive in year t dies before

probability (qx,t) year t + 1

One-year survival Probability that an individual of age x and alive in year t is still alive

probability (px,t) in year t + 1

Parameter risk Uncertainty in the true value of the parameters

Partial adjustment Retirement age adjusts to life expectancy such that the value of an

retirement age (PARA) annuity remains the same

βx Sensitivity of log central death rates to time trend

Risk compensation (t0,i) Financial compensation for absorbing risk for a participant in cohort i

Risk sharing Allocate risks to cohorts via a predetermined rule

Risk-sharing rule (t(ỹ)) Risk transfer plus risk compensation

Risk transfer (ηi) Part of total macro-longevity shock a participant in cohort i absorbs

Stochastic variation Random variation in the aggregate realized number of deaths

Time trend (κt) Development of death rates over time

Uncertainty in trend (ηt) Random variation in the time trend

σ2ε Variance death rates

σ2η Variance trend

Wi Wealth of a participant in cohort i

Welfare gain Relative increase certainty equivalent consumption after retirement

ỹi Amount of money needed to offset effect of macro-longevity shock

for a participant in cohort i

ỹT Amount of money needed to offset effect of macro-longevity shock

for all cohorts
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