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1 Introduction

The internal habit formation literature, in which individuals draw utility

from consumption relative to an endogenous habit, can be divided along two main

model specifications that have been widely used in economics and finance: additive

habits1 (Constantinides (1990)) and multiplicative habits (Abel (1990)).2 While both

models are appealing from a prescriptive and a descriptive point of view, the latter

model specification, also referred to as the ratio internal habit model, is advocated in

particular by Carroll (2000) and Fuhrer (2000). Just like the additive internal habit

model, the ratio internal habit model can be rationalized (see, e.g., Crawford (2010) and

references therein) while, at the same time, it can account for the observed degree of

excess smoothness in consumption. Contrary to the additive internal habit model, the

ratio internal habit model does not require an artificial constraint on the individual’s

initial wealth position or on the habit dynamics to avoid negative infinite utility.3

Multiplicative internal habits play a central role in this paper.

A main ingredient of optimal consumption and portfolio choice problems is the

temporal structure of preferences. The ratio internal habit model implies

time-inseparability of preferences, but maintains a time additive structure in terms of

relative consumption.4 As is well-known, an additive structure where utility is additive

over time and states of nature implies that the elasticity of intertemporal substitution

(EIS) and risk aversion are linked. This is analytically convenient yet fairly restrictive.

Therefore, we study multiplicative internal habits also under Epstein-Zin utility

(Epstein and Zin (1989)).5 This preference model decouples the EIS from risk aversion

and has been widely used in the consumption and portfolio choice literature.6

In this paper we develop a closed-form approach to solve consumption and portfolio

choice problems involving multiplicative internal habits. To analyze how multiplicative

internal habit formation affects the conventional wisdom on optimal consumption and

1Additive habits are also referred to as subtractive habits, linear habits, or the difference habit model.
2Some authors assume that habits are external rather than internal; see, e.g., Abel (1990)’s catching-

up-with-the-Joneses specification, Campbell and Cochrane (1999), and Chan and Kogan (2002).
3See, e.g., Carroll (2000) and Munk (2008) for a discussion of this point.
4Henceforth, relative consumption is defined as the ratio between consumption and the endogenous

habit level.
5Strictly speaking, we consider stochastic differential utility (SDU), which arises as a continuous-time

limit of Epstein-Zin utility; see Duffie and Epstein (1992). See also Kraft and Seifried (2014) who show
that Epstein-Zin utility converges to SDU.

6See, e.g., Campbell and Viceira (1999), Campbell, Cocco, Gomes, Maenhout, and Viceira (2001),
Chacko and Viceira (2005), and Bhamra and Uppal (2006).
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investment dynamics, we apply our general approach to three important cases: a base

case with multiplicative internal habits, additive utility in terms of relative consumption,

and constant investment opportunities; an extension of the base case with stochastic

investment opportunities involving stochastic interest rates; and a case which combines

multiplicative internal habits with Epstein-Zin utility.

In a nutshell, our approach consists of first applying a change of variables, redefining

consumption in relative terms, and next pursuing a suitable pathwise linearization of

the static budget constraint around the endogenous habit level.7 Our approximation

approach transforms consumption and portfolio choice problems with multiplicative

internal habits into approximate consumption and portfolio choice problems without

habits. This enables us to obtain closed-form approximate solutions to a variety of

consumption and portfolio choice problems with multiplicative internal habit formation

under general utility functionals and stochastic investment opportunities.

We can summarize our three main findings as follows. First, we characterize in

explicit closed-form how a habit-forming individual in the base-line model adjusts both

his current consumption level and future growth rates of consumption after a stock

return shock. While consumption is well-known to be excessively smooth under the

ratio internal habit model, an explicit closed-form characterization of the shock

absorbing mechanism is new. We show that the features of the marginal propensity to

consume (i.e., shock absorbing mechanism) and investment strategy are determined by

two factors: the degree of relative risk aversion and the strength of habit persistence.

These factors not only have clear economic interpretations themselves but also induce

clearly interpretable implications for the optimal consumption and portfolio decisions:

the degree of relative risk aversion determines how large the impact of a stock return

shock is on the individual’s current consumption level,8 and the strength of habit

persistence determines the horizon-dependent impact of a stock return shock on future

growth rates of consumption.9,10 By contrast, under conventional constant relative risk

7Linearization of the static budget constraint is not uncommon in the economics literature; see, in a
different context, e.g., Campbell and Mankiw (1991), and Fuhrer (2000).

8In particular, we show that a stock return shock has a smaller impact on the current consumption
level of a highly risk-averse individual than on that of a weakly risk-averse individual.

9We find that the more persistent the habit level is, the larger the impact of a stock return shock on
future growth rates of consumption will be.

10We argue that the optimal policies provide a preference-based justification for the existence of annuity
products in which surpluses earned in good years support benefit payouts in bad years. Such annuity
products have been analyzed by e.g., Guillén, Jørgensen, and Nielsen (2006), Jørgensen and Linnemann
(2012), Guillén, Nielsen, Pérez-Maŕın, and Petersen (2013), Maurer, Rogalla, and Siegelin (2013a),
Linnemann, Bruhn, and Steffensen (2014), and Maurer, Mitchell, Rogalla, and Siegelin (2016).
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aversion (CRRA) utility, which has become a main benchmark since Merton (1969), the

impact of a stock return shock on consumption is uniformly distributed over time: it

does not depend on the time distance between the occurrence of the shock and the date

of consumption. We also find that an increase in habit persistence leads to a riskier

investment strategy while leaving the year-on-year consumption volatility unaffected.11

As a result, current consumption of a habit-forming individual is less volatile than his

underlying investment portfolio. Furthermore, we show that a habit-forming individual

implements a life-cycle investment strategy that is nearly independent of the state of

the economy (especially at high ages) and depends only on age.12 Contrary to under

conventional CRRA utility, we do not need human capital to justify a life-cycle

investment strategy.13

Second, in an extension of our base-line model that allows for stochastic interest rates

and stock-bond investments, we find that the interest rate duration of the optimal hedging

bond portfolio is hump shaped over the life cycle, which contradicts the conventional

wisdom that the duration of the optimal hedging bond portfolio is decreasing with age.

Two counteracting forces determine the life-cycle pattern of the duration of the optimal

hedging bond portfolio. On the one hand, the impact of an interest rate shock on the

price of future consumption is larger the younger the individual is. This effect causes the

duration of the optimal hedging bond portfolio to decrease with age and is familiar from

Brennan and Xia (2002) (see also Merton (2014)). On the other hand, we find a new

effect that causes the duration of the optimal hedging bond portfolio to increase with age.

We can explain this effect by the fact that a habit-forming individual is less willing to

substitute consumption over time as he grows older. Intuitively, as the individual grows

older, the duration of remaining lifetime consumption declines, and hence the current

habit level determines to a greater extent future consumption levels.14

A general feature of many habit formation models (including our base-line model)

11This finding stands in sharp contrast to standard unit-linked insurance products and traditional
drawdown strategies in which a more aggressive portfolio strategy directly translates into a higher
year-on-year consumption volatility. See, e.g., Dus, Maurer, and Mitchell (2005), Horneff, Maurer,
Mitchell, and Dus (2008), and Maurer, Mitchell, Rogalla, and Kartashov (2013b) for a description of
these products.

12More specifically, the individual in our base-line model lowers the share of his portfolio invested in
the risky stock as he becomes older. Indeed, the available time to adjust current and future consumption
levels in response to a stock return shock declines with age.

13For the classical implications of human capital on the optimal portfolio allocation, see Bodie, Merton,
and Samuelson (1992) and Cocco, Gomes, and Maenhout (2005).

14The second effect may explain why not many young individuals include long-term bonds in their
investment portfolios; see Morningstar (2017) for the investment behavior of long-term investors.
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is that median consumption grows at unrealistically high rates (especially at high ages)

except when the time discount rate is excessive. We therefore also analyze a model

that combines Epstein-Zin utility with multiplicative internal habits.15 Our third main

finding is, then, that in this setting that decouples the EIS from risk aversion, habit

formation does not necessarily lead to unrealistically high unconditional median growth

rates of consumption at the end of life, even when the time discount rate is moderate.

Furthermore, wealth accumulation is substantially lower under this extended model than

under the base-line model. Hence, an individual whose preferences combine multiplicative

internal habit formation with Epstein-Zin utility invests less wealth in the stock market

compared to an individual without Epstein-Zin utility.

The endogenous nature of the habit in internal habit formation models substantially

complicates the analysis of optimal consumption and portfolio policies and asset pricing

problems. In important work, Schroder and Skiadas (2002) show how to transform models

with additive internal habits into models without habit formation, enabling closed-form

solutions to a wide range of asset pricing problems involving additive internal habits.16

Conversely, their approach allows to translate solutions to familiar consumption and

portfolio choice problems under general utility functionals into solutions to corresponding

problems exhibiting additive internal habit formation. So far, however, internal habit

formation models with multiplicative habits cannot be solved analytically. Thus, analysis

of the appealing ratio internal habit model necessarily resorted to numerical methods to

obtain solutions, impeding their applicability.

We obtain closed-form solutions to consumption and portfolio choice problems

featuring multiplicative internal habits based on developing a pathwise approximation

to the budget constraint. Our numerical results show that the approximation error,

when measured in terms of the relative decline in certainty equivalent consumption, is

typically less than 1%, and that the explicit optimal policies to the approximate

problems closely mimic the numerically evaluated optimal policies to the original

problems. Having closed-form solutions has three key advantages: they reveal the roles

played by the various model parameters, they are readily amenable to comparative

statics analysis, and they facilitate the implementation of the optimal consumption and

investment policies.

15The closest to the current paper in this respect is Schroder and Skiadas (1999) who analytically
studied Epstein-Zin utility but did not consider multiplicative internal habits.

16See, e.g., Van Bilsen, Laeven, and Nijman (2017) who employ Schroder and Skiadas (2002) to
explicitly derive the optimal consumption and portfolio policies under loss aversion and endogenous
updating of the reference level—two key features of prospect theory (Tversky and Kahneman (1992)).
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We note that the problem of optimal consumption and portfolio choice over the life

cycle has intrigued many authors since the seminal work of Mossin (1968), Merton

(1969, 1971), and Samuelson (1969). Their work has been extended along many

dimensions.17 Many life-cycle consumption and portfolio choice papers assume a

standard preference model; that is, decision makers’ preferences are described by

time-additive CRRA utility or Epstein-Zin Constant EIS-CRRA utility. While these

standard preference models satisfy a set of normatively compelling axioms, their ability

to describe how people actually make decisions under risk is known to be limited.

Furthermore, their predictions fail to explain well-documented facts about actual

consumption and portfolio behavior such as the excess smoothness of consumption. The

shortcomings of standard preference models have inspired many researchers to develop

alternative theories for decision-making under risk,18 including habit formation.

Several authors have explored the implications of these alternative preference

theories for optimal investment decisions or intertemporal consumption behavior.19

Most relevant to our base-line model are Detemple and Zapatero (1991, 1992), Schroder

and Skiadas (2002), Bodie, Detemple, Otruba, and Walter (2004) and Munk (2008) who

analyze the optimal consumption and investment behavior of an individual who derives

utility from the difference between consumption and an internal habit level, rather than

some ratio of these as we do. Contrary to under the ratio habit model, the optimal

consumption choice implied by the difference habit model exceeds the habit level in

each economic scenario. This so-called addictive behavior of consumption is criticized

theoretically e.g., by Chapman (1998) and Carroll (2000), and arguably at odds with

empirical evidence.20 Finally, the ratio habit model has been employed in other papers

to analyze monetary policy (Fuhrer (2000)), asset prices with an external habit (Abel

(1999), Chan and Kogan (2002) and Gómez, Priestley, and Zapatero (2009)) and an

17For instance, to accommodate time-varying investment opportunities (see, e.g., Campbell et al.
(2001), Wachter (2002), Chacko and Viceira (2005), Liu (2007), and Laeven and Stadje (2014)); uncertain
labor income (see, e.g., Viceira (2001), Cocco et al. (2005), and Gomes and Michaelides (2005)); housing
costs (see, e.g., Cocco (2005), and Yao and Zhang (2005)); and unexpected health expenditures (see,
e.g., Edwards (2008)).

18Among the most notable alternatives are prospect theory (Kahneman and Tversky (1979), and
Tversky and Kahneman (1992)), regret theory (Loomes and Sugden (1982), Bell (1982, 1983), Sugden
(1993), and Quiggin (1994)), disappointment (aversion) theory (Bell (1985), Loomes and Sugden (1986),
and Gul (1991)), and habit formation (Abel (1990), Constantinides (1990) and Sundaresan (1989)).

19See, e.g., Bowman, Minehart, and Rabin (1999), Berkelaar, Kouwenberg, and Post (2004), Ang,
Bekaert, and Lui (2005), Muermann, Mitchell, and Volkman (2006), Guasoni, Huberman, and Ren
(2015), Pagel (2017) and Van Bilsen et al. (2017).

20For instance, Crossley, Low, and O’Dea (2013) show that consumption levels declined significantly
during recent recessions, contradicting the addictive property of consumption.
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internal habit (Smith and Zhang (2007)), macroeconomic growth (Carroll, Overland,

and Weil (1997), Carroll, Overland, and Weil (2000) and Carroll (2000)), and portfolio

choice with uninsurable labor income risk (Gomes and Michaelides (2003)).

2 Model

2.1 Asset Prices, Pricing Kernel and Budget Constraint

Denote by T > 0 a fixed terminal time. We represent the randomness in the

economy by a filtered probability space (Ω,F ,F,P) on which is defined a standard

N -dimensional Brownian motion {Wt}0≤t≤T . The filtration F = {Ft}0≤t≤T is the

augmentation under P of the natural filtration generated by the standard Brownian

motion {Wt}0≤t≤T . Throughout, (in)equalities between random variables hold P-almost

surely.

We consider a financial market consisting of an instantaneously risk-free asset and N

risky assets. Trading takes place continuously over [0, T ]. The price of the risk-free asset,

Bt, satisfies
dBt

Bt

= rt dt, B0 = 1. (1)

We assume that the scalar-valued risk-free rate process, {rt}0≤t≤T , is Ft-progressively

measurable and satisfies
∫ T

0
|rt| dt <∞. The N -dimensional vector of risky asset prices,

St, obeys the following stochastic differential equation:

dSt
St

= µt dt+ σt dWt, S0 = 1N . (2)

Here, 1N represents an N -dimensional vector consisting of all ones. We assume that the

N -dimensional mean rate of return process, {µt}0≤t≤T , and the (N × N)-matrix-valued

volatility process, {σt}0≤t≤T , are Ft-progressively measurable and satisfy
∫ T

0
||µt|| dt <

∞ and
∑N

i=1

∑N
j=1

∫ T
0

(σt)
2
ij dt < ∞, respectively. We impose the following additional

condition on σt. For some ε > 0,

ζ>σtσ
>
t ζ ≥ ε||ζ||2, for all ζ ∈ RN , (3)

where > denotes the transpose sign. Condition (3) implies in particular that σt is

invertible.
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The Ft-progressively measurable market price of risk process, {λt}0≤t≤T , satisfies

σtλt = µt − rt1N . (4)

The unique positive-valued state price density process, {Mt}0≤t≤T , is given by (see, e.g.,

Karatzas and Shreve (1998)):

Mt = exp

{
−
∫ t

0

rs ds−
∫ t

0

λ>s dWs −
1

2

∫ t

0

||λs||2 ds

}
. (5)

The economy consists of a single individual endowed with initial wealth A0 ≥ 0.

This individual chooses an Ft-progressively measurable N -dimensional portfolio process

{πt}0≤t≤T (representing the dollar amounts invested in the N risky assets) and an

Ft-progressively measurable consumption process {ct}0≤t≤T so as to maximize lifetime

utility. We impose the following integrability conditions on the portfolio and

consumption processes:∫ T

0

π>t σtσ
>
t πt dt <∞,

∫ T

0

∣∣πt (µt − rt1N)
∣∣ dt <∞, E

[∫ T

0

|ct|r dt

]
<∞ ∀ r ∈ R. (6)

The wealth process, {At}0≤t≤T , satisfies the following dynamic budget constraint:

dAt =
(
rtAt + π>t σtλt − ct

)
dt+ π>t σt dWt, A0 ≥ 0 given. (7)

We call a consumption-portfolio strategy {ct, πt}0≤t≤T admissible if the associated wealth

process is positive.

2.2 Habit Level

Denote by ht the individual’s habit level at time t. Following Kozicki and Tinsley

(2002) and Corrado and Holly (2011), we assume that the log habit level log ht satisfies

the following dynamic equation:21

d log ht = (β log ct − α log ht) dt, log h0 = 0. (8)

21The log habit level log ht is additive, i.e., linear, in past levels of log consumption. Corrado and
Holly (2011) show that for the ratio internal habit model, the habit specification (8) (see also (10)) is
more desirable than an arithmetic habit specification in which the habit level ht itself is additive in past
levels of consumption.
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We normalize the initial log habit log h0 to zero, i.e., h0 equals unity. The preference

parameter α ≥ 0 represents the rate at which the log habit level exponentially depreciates.

When α is small, the log habit level exhibits a high degree of memory. The preference

parameter β ≥ 0 models the relative importance between the initial habit level and the

individual’s past consumption choices. When β is large, the individual’s past consumption

choices are relatively important. We impose the following restriction on the individual’s

preference parameters:

α ≥ β. (9)

The parameter restriction (9) prevents the individual’s habit level from growing

exponentially over time; see Eqn. (15) below. In the special case where β = 0, the habit

level is exogenously given.

Finally, we note that we can write the log habit level log ht as a weighted sum of the

individual’s log past consumption choices:

log ht = β

∫ t

0

exp {−α(t− s)} log cs ds. (10)

2.3 Dynamic Optimization Problem

Let U (c/h) ∈ R ∪ {−∞} be the individual’s lifetime utility derived from the process

c/h = {ct/ht}0≤t≤T representing the ratio between consumption and the habit level. We

place no restrictions on U . The individual now faces the following dynamic optimization

problem over admissible consumption-portfolio strategies {ct, πt}0≤t≤T :

max
ct,πt:0≤t≤T

U
( c
h

)
s.t. dAt =

(
rtAt + π>t σtλt − ct

)
dt+ π>t σt dWt,

d log ht = (β log ct − α log ht) dt,

(11)

with A0 ≥ 0 given.

Section 3 presents a solution technique for analytically solving (11) based on

developing a pathwise linearization to the individual’s budget constraint.
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3 Solution Method

3.1 An Equivalent Problem

We can, by virtue of the martingale approach (Pliska (1986), Karatzas, Lehoczky, and

Shreve (1987), and Cox and Huang (1989, 1991)), transform the individual’s dynamic

optimization problem (11) into the following equivalent static variational problem:

max
ct:0≤t≤T

U
( c
h

)
s.t. E

[∫ T

0

Mtct dt

]
≤ A0,

d log ht = (β log ct − α log ht) dt,

(12)

where Mt is given by (5). After the optimal consumption choice copt
t has been determined,

one can determine the optimal portfolio choice πopt
t using hedging arguments.

3.2 A Change of Variable Transformation

Denote by ĉt the ratio between the individual’s consumption choice and his habit

level; that is,

ĉt =
ct
ht
. (13)

We can express the dynamics of the log habit level in terms of the individual’s log relative

consumption choice log ĉt = log (ct/ht) as follows:22

d log ht = (β log ĉt − [α− β] log ht) dt. (14)

Hence, the individual’s log habit level log ht is explicitly given by

log ht = β

∫ t

0

exp {−(α− β)(t− s)} log ĉs ds. (15)

Eqn. (15) shows that, as a result of the parameter restriction α ≥ β (see (9)), the

individual’s habit level is prevented from growing exponentially over time.

We can thus rewrite the individual’s static optimization problem (12) in terms of

22The dynamics of the log habit level (14) follow from substituting log ct = log ht + log ĉt into (8).
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ĉt = ct/ht yielding the following equivalent problem:

max
ĉt:0≤t≤T

U (ĉ )

s.t. E
[∫ T

0

Mthtĉt dt

]
≤ A0,

d log ht = (β log ĉt − [α− β] log ht) dt.

(16)

We then obtain the optimal consumption choice copt
t from the optimal relative

consumption choice ĉ opt
t as follows:23

copt
t = hopt

t ĉ opt
t . (17)

To solve the individual’s static optimization problem (12), we can thus restrict ourselves to

solving (16). In applications, it is still typically impossible to solve the individual’s static

optimization problem (16) analytically. The reason for this is that the new static budget

constraint in (16) depends non-linearly on the individual’s relative consumption choices.24

Section 3.3 develops a pathwise linearization for the new static budget constraint in (16).

After applying this linearization, we are able to obtain analytical closed-form expressions

for the individual’s consumption and investment policies in a wide range of interesting

cases.

3.3 Linearization of the New Static Budget Constraint

This section presents a linear approximation to the left-hand side of the new static

budget constraint in (16) around the relative consumption trajectory {ĉt}0≤t≤T = 1.25

Consumption ct is thus approximated around the endogenous habit level ht. The key

insight here is that, because the habit level is determined endogenously by the individual’s

own weighted past consumption choices, it tracks consumption. As a consequence, the

habit level is a natural candidate around which to apply the approximation. This yields

a ‘pathwise approximation’. Section 7 explores in detail the approximation error induced

by applying our pathwise approximation to the new static budget constraint in (16).

23We can determine hoptt by substituting the optimal past relative consumption choices ĉ opt
s (s ≤ t)

into (15).
24Indeed, substitution of the habit level ht (see (15)) into the budget constraint in (16) shows that the

new static budget constraint in (16) is non-linear in the individual’s relative consumption choices.
25The Appendix considers the more general case in which the budget constraint is approximated around

the relative consumption trajectory {ĉt}0≤t≤T = x for some positive x.
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The numerical results reveal that the approximation error is typically less than 1% in

terms of relative decline in certainty equivalent consumption and that our closed-form

approximated strategies closely mimic the genuinely optimal (but numerically evaluated)

strategies.

Appendix A proves the following theorem.

Theorem 3.1. Consider an individual who aims to solve the optimization problem

(12). This problem is equivalent to the following simpler problem up to a first-order

approximation of the static budget constraint:

max
ĉt:0≤t≤T

U (ĉ )

s.t. E
[∫ T

0

M̂tĉt dt

]
≤ Â0.

(18)

Here,

M̂t = Mt (1 + βPt) (19)

with Pt denoting the price at time t of a bond that pays the coupon process{
e−(α−β)(s−t)}

s≥t, i.e.,

Pt = Et
[∫ T

t

Ms

Mt

e−(α−β)(s−t) ds

]
. (20)

The quantity Â0 denotes the individual’s initial wealth associated with the approximate

problem (18). We determine the individual’s initial wealth Â0 such that the approximate

optimal consumption strategy {c∗t}0≤t≤T = {h∗t ĉ ∗t }0≤t≤T is budget-feasible.26

The relative consumption choice ĉ ∗t solving (18) is an approximation to the optimal

relative consumption choice ĉ opt
t . Note that the endogenous habit level ht now does

not appear in (18), thanks to the change of variable transformation and, crucially, our

pathwise linearization of the static budget constraint.

Remark 1. Using a suitable transformation, Schroder and Skiadas (2002) translate

models with an internal habit and utility expressed as a function of the difference

between consumption and a habit level into models without habit formation.

Interestingly and quite surprisingly (to us), the transformed state-price density process

(19) and hence the transformed problem (18) are identical to the transformed

26Here, h∗t denotes the habit level at time t implied by substituting the approximate optimal past
relative consumption choices ĉ ∗s (s ≤ t) into (15).
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counterparts in Schroder and Skiadas (2002), the difference being that ĉt represents

surplus consumption ct − ht in their framework while it represents relative consumption

ct/ht in our framework. In their setting, the original budget constraint is equivalent to

the budget constraint in the transformed problem:

E
[∫ T

0

Mtct dt

]
= E

[∫ T

0

M̂t (ct − ht) dt

]
+K1, (21)

while in our setting the new budget constraint first-order approximates the original budget

constraint:

E
[∫ T

0

Mtct dt

]
≈ E

[∫ T

0

M̂t

ct
ht

dt

]
+K2. (22)

Here, K1 and K2 are constants that are irrelevant in determining the first-order optimality

conditions. Note also that the interpretation of the parameters α and β is different in the

two papers as we consider the dynamics of the log habit level log ht while they consider

the dynamics of the habit level ht.

4 Ratio Internal Habit Model

This section assumes that lifetime utility is defined as follows:

U
( c
h

)
= E

[∫ T

0

e−δt
1

1− γ

(
ct
ht

)1−γ

dt

]
, (23)

with ht given by (10). Here, E represents the unconditional expectation, δ ≥ 0 stands

for the individual’s subjective rate of time preference, and γ > 0 denotes the individual’s

coefficient of relative risk aversion. Specification (23) corresponds to the habit formation

model proposed by Abel (1990).

In (23), relative risk aversion is constant. Several authors explore the implications

of the difference internal habit model in which relative risk aversion is not constant but

rather depends on surplus consumption ct− ht. As a result, the optimal strategies under

the difference internal habit model are considerably different from the optimal strategies

under the ratio internal habit model. In particular, the portfolio strategy of an individual

whose preferences are represented by the difference internal habit model heavily depends

on the individual’s endogenous habit level. In our model, by contrast, the portfolio

strategy is nearly state-independent; see Section 4.5 for more details.
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4.1 Optimal Consumption Choice

Theorem 4.1 presents the (approximate) optimal consumption choice c∗t .

Theorem 4.1. Consider an individual with lifetime utility (23) and habit formation

process (8) who solves the consumption and portfolio choice problem (18). Denote by h∗t

the habit level at time t implied by substituting the (approximate) optimal past relative

consumption choices ĉ ∗s (s ≤ t) into (15), and by y the Lagrange multiplier associated

with the static budget constraint in (18). Then the (approximate) optimal consumption

choice c∗t is given by

c∗t = h∗t

(
yeδtM̂t

)− 1
γ
. (24)

The Lagrange multiplier y ≥ 0 is determined such that the individual’s original budget

constraint holds with equality.

Note that (24) is exactly equal to copt
t in case α = β = 0.

4.2 Sensitivity and Volatility of Future Consumption

In the remainder of this section, we assume constant investment opportunities (i.e.,

rt = r, µt = µ, σt = σ and λt = λ for all t) and only one risky stock. We set the

risk-free interest rate r at 1%, the equity risk premium e = µ − r at 4%, and the stock

return volatility σ at 20%. These parameter values are the same as those used in Gomes,

Kotlikoff, and Viceira (2008). The rate of time preference δ is assumed to be equal to

3%.27

Denote by qt−s the sensitivity of log consumption, log c∗t , to a past stock return shock,

σ dWs (s ≤ t). We find the explicit closed-form expression (see Appendix A)28

qt−s =
λ

γσ
Qt−s, (25)

with

Qt−s = 1 +
β

α− β
[1− exp {−(α− β)(t− s)}] . (26)

The sensitivity qt−s, dictating the optimal shock absorbing mechanism in analytical form,

depends on the time distance between the date at which the stock return shock occurs (i.e.,

27Samwick (1998) finds that the median rates of time preference for US households are between 3%
and 4%.

28We note that if α = β, then (26) reduces to Qt−s = 1 + β(t− s).
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time s) and the date of consumption (i.e., time t > s). In particular, a closer inspection

of (25) reveals that qh increases with the time distance (or horizon) h: a current stock

return shock has a smaller impact on log consumption in the near future (i.e., small

h) than on log consumption in the distant future (i.e., large h). In case the individual

exhibits conventional constant relative risk aversion (CRRA) utility (henceforth referred

to as a CRRA individual), which has become the main benchmark since Merton (1969),

the sensitivity qh is independent of the horizon h.

Our utility framework thus provides a preference-based justification for the existence

of annuity products in which current stock return shocks are not fully reflected into

current annuity payouts. These products work as follows (see, e.g., Guillén et al. (2006),

Linnemann et al. (2014), and Maurer et al. (2016)). In the case of a positive investment

return, the annuity payout will go up by less than the realized return. The remaining

investment gains will be added to a reserve fund. In the case of a negative investment

return, the annuity payout will be protected and will decrease by a lower percentage than

the realized return. This ‘payout protection’ will be paid from the reserve fund. The just

described mechanism results in an excessively smooth payout stream.

The individual’s preference parameters γ, α and β have clearly interpretable

implications for the individual’s optimal consumption choice. We find that a current

stock return shock σ dWt has a smaller impact on the current consumption level of a

highly risk-averse individual (i.e., high γ) than on that of a weakly risk-averse

individual (i.e., low γ). Indeed, a highly risky-averse individual is more risk averse to

year-on-year fluctuations in current consumption than a weakly risk-averse individual.

The coefficients β and α̂ = α − β, which measure the degree of habit persistence,

determine the impact of a current stock return shock on the future growth rates of

(median) consumption. If the individual’s preferences exhibit a large degree of habit

persistence (i.e., β is large and α̂ is close to zero), a current stock return shock will have

a relatively large impact on future growth rates of consumption: the individual adjusts

the future growth rates of consumption downwards (upwards) by a relatively large

percentage after the occurrence of a negative (positive) stock return shock. Figure 1

illustrates the sensitivity qh as a function of the horizon h for various parameter values.

Denote by Σt,h the annualized volatility of future consumption log c∗t+h at time t, i.e.,

Σt,h :=

√
Vt

[
log c∗t+h

]
h

. (27)
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Figure 1: Sensitivity of future consumption. The figure illustrates the sensitivity of future
consumption to a stock return shock (i.e., qh) as a function of the horizon h (i.e., the time distance
between the date at which the stock return shock occurs and the date of consumption). The figure
considers four different types of individuals: a highly risk-averse individual with a low degree of habit
persistence (i.e., γ = 20, α = 0.2, β = 0.1); a highly risk-averse individual with a high degree of habit
persistence (i.e., γ = 20, α = β = 0.3); a moderately risk-averse individual with a low degree of habit
persistence (i.e., γ = 10, α = 0.2, β = 0.1); and a moderately risk-averse individual with a high degree
of habit persistence (i.e., γ = 10, α = β = 0.3). In the case of a CRRA individual, the sensitivity of
future consumption does not depend on the horizon h. We set both the market price of risk λ and the
stock return volatility σ equal to 0.2.

Here, Vt denotes the variance conditional on the information available at time t. We find

that the annualized volatility of the future consumption choice of an individual whose

preferences exhibit internal habit formation depends on the horizon h. More specifically,

the annualized volatility of log c∗t+h is given in closed-form by

Σt,h = Σh =

√∫ h
0
q2
v dv

h
· σ. (28)

Note that the annualized variance is proportional to the normalized integrated squared

sensitivity qh. Because qh increases with the horizon h, it follows that for an individual

with habit preferences, the annualized volatility of consumption in the near future is

smaller than the annualized volatility of consumption in the far future. Finally, we note

that the annualized volatility of the future consumption choice of a CRRA individual

does not depend on the horizon h: consumption in the near future exhibits the same

annualized volatility as consumption in the far future.
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4.3 Shock Absorbing Mechanism

This section illustrates in more detail how the current and future consumption levels of

an individual whose preferences exhibit internal habit formation respond to an unexpected

stock return shock. We consider an individual who starts working at the age of 25 and

passes away at the age of 85. He invests and spends his accumulated wealth according

to the ratio internal habit model (23) with preference parameters γ = 10, α = 0.3 and

β = 0.3. We also study our model findings for other degrees of habit persistence.29 As

we show below, our results remain qualitatively unchanged if we vary the degree of habit

persistence. We assume that the individual adjusts consumption once a year.30

We compare our findings to the optimal behavior of a CRRA individual. We assume

that the CRRA individual invests 50% of his accumulated wealth in the stock market.31

His investment behavior roughly coincides with the investment behavior of a 58-year-

old individual with habit preferences; for more details on the portfolio strategy of an

individual with habit preferences, see Section 4.5.

Figures 2(a) and (b) illustrate the impact of a 38%32 stock price decline in year one on

current and future consumption choices. A CRRA individual fully translates a current

stock return shock into his current consumption level. In this illustration, the current

consumption level of a CRRA individual decreases by 19.35% after the stock price shock

has been realized. The stock return shock does not affect the future growth rates of his

consumption; see Figure 2(a) which shows that the shape of the median consumption

path of a CRRA individual remains unaffected by a stock return shock.

An individual whose preferences exhibit internal habit formation does not fully

translate a current stock return shock into his current consumption level. As a result,

the relative decline in the current consumption level of an individual with habit

preferences is typically smaller than the relative decline in the current consumption

level of a CRRA individual. Indeed, his current consumption level drops by only 4.21%

while the current consumption level of a CRRA individual drops by more than 19%.

The flip side of protecting current consumption is that the shape of the median

29We note that the degrees of habit persistence we explore are considered reasonable by Fuhrer (2000)
and Gomes and Michaelides (2003).

30All figures and tables in this paper assume that the individual adjusts consumption only once a year.
We note that this is not a restriction of our framework. We could also illustrate the case in which the
individual adjusts consumption every month or every week.

31Assuming λ = σ = 0.2, a portfolio weight of 50% implies a relative risk aversion coefficient of 2 in
the Merton model (Merton (1969)).

32This number corresponds to the decline in the S&P 500 index between January 1, 2008 and December
31, 2008.
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consumption path cannot remain unchanged following a stock return shock; see Figure

2(b) which shows that the individual adjusts the future growth rates of his median

consumption downwards. A consequence of adjusting future growth rates is thus that

the impact of a shock on median consumption is larger the longer the horizon is.

Figures 2(c) and (d) illustrate the impact of a 24%33 stock price increase in year two

on current and future consumption choices. As in Figure 2(a), the CRRA individual

directly absorbs the current stock return shock into his current consumption level. The

current stock return shock has a smaller impact on the current consumption level of

an individual with habit preferences than on that of the CRRA individual. Indeed, an

individual with habit preferences has a strong preference to protect current consumption.

In fact, in this illustration, he only consumes slightly more than last year, because he has

translated part of last year’s (negative) stock return shock into consumption of this year.

Furthermore, as a result of the current stock price increase, he adjusts the future growth

rates of his median consumption upwards; see Figure 2(d).

4.4 Decomposition of the Consumption Dynamics

We can decompose the dynamics of the individual’s log consumption choice log c∗t as

follows (see Appendix A):34

d log c∗t = gt dt+ pt dt+
λ

γσ
σ dWt. (29)

Here,

gt =
1

γ

(
r̂t +

1

2
λ2 − δ

)
, (30)

pt = Q′t log c∗0 +
1

γ

∫ t

0

Q′t−sgs ds+
λ

γσ

∫ t

0

Q′t−sσ dWs, (31)

with r̂t = β + (r − αβPt) / (1 + βPt), Q
′
t−s = dQt−s/ dt, and Pt and Qt−s defined in (20)

and (26), respectively.

The right-hand side of Eqn. (29) consists of three terms. The first term gt dt represents

the unconditional median growth rate of log consumption. Two counteracting forces

33This number corresponds to the increase in the S&P 500 index between January 1, 2009 and
December 31, 2009.

34Appendix B studies the optimal consumption dynamics in the case the terminal time T equals the
individual’s uncertain date of death.
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(b) Individual with Habit Preferences
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(d) Individual with Habit Preferences

Figure 2: Shock absorbing mechanisms. The figure shows the impact of stock return shocks
on current and future consumption choices. The left panels consider a CRRA individual, while the
right panels consider an individual whose preferences exhibit internal habit formation (with preference
parameters γ = 10, α = 0.3, and β = 0.3). The small solid lines represent the change in current
consumption as a result of the shock. The CRRA individual invests 50% of his accumulated wealth in
the stock market (i.e., his relative risk aversion coefficient is equal to 2). Wealth at the age of 25 is for
both individuals equal to 45. We set the risk-free interest rate r equal to 1%, the market price of risk λ
to 0.2, the stock return volatility σ to 20%, and the subjective rate of time preference δ to 3%.

determine how large the unconditional median growth rate is. First, the individual has

a preference to reduce current consumption (i.e., to increase the unconditional median

growth rate of log consumption). Indeed, a decrease in current consumption dampens

future habit levels. Furthermore, it increases expected investment earnings, because the
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individual will be able to save more. The values for the parameters α, β, r and λ jointly

determine the strength of the first force. Second, the individual has a preference to

increase current consumption (i.e., to reduce the unconditional median growth rate of

log consumption). Indeed, the individual is impatient: he prefers to consume sooner

rather than later. The value for the preference parameter δ determines the strength

of the second force. A large value for δ implies a relatively impatient individual. The

second term pt dt represents past stock return shocks that the individual translates into

the current median growth rate of log consumption. This term disappears if preferences

do not exhibit internal habit formation (i.e., β = 0, so that Qh = 1 for all h). Finally, the

last term λ/ (γσ)·σ dWt corresponds to the current stock return shock that the individual

directly translates into his current consumption level.

Figure 3 illustrates a consumption path for different types of individuals. As shown by

this figure, the consumption stream of an individual with habit preferences is smoother

than the consumption stream of a CRRA individual. As is well-known, an excessively

smooth consumption stream is also consistent with aggregate consumption data (see, e.g.,

Flavin (1985), Deaton (1987), and Campbell and Deaton (1989)) and other behavioral

models (see, e.g., Kőszegi and Rabin (2006, 2007, 2009), Pagel (2017), and Van Bilsen

et al. (2017)).

4.5 Optimal Portfolio Choice

Theorem 4.2 presents the (approximate) optimal portfolio choice π∗t .

Theorem 4.2. Consider an individual with lifetime utility (23) and habit formation

process (8) who solves the consumption and portfolio choice problem (18). Then the

(approximate) optimal portfolio choice π∗t is given by

π∗t =

∫ T−t

0

qh
Vt,h
Vt

dh · At. (32)

Here, Vt =
∫ T−t

0
Vt,h dh and Vt,h denotes the market value at time t of c∗t+h. Appendix A

provides an explicit analytical expression for Vt,h (see (66)).

Figure 4 illustrates the portfolio strategy π∗t /At of an individual with habit preferences.

The individual implements a life-cycle investment strategy: the share of accumulated

wealth invested in the risky stock decreases as the individual ages. Indeed, the individual

has less time to absorb a stock return shock as he grows older. We observe that the larger
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Figure 3: Consumption dynamics. Panel A illustrates a consumption path of a CRRA individual,
while panel B shows the impact of internal habit formation on the consumption dynamics. Panel B
considers four different types of individuals: a moderately risk-averse individual with a high degree of
habit persistence (i.e., γ = 10, α = β = 0.3), a highly risk-averse individual with a high degree of habit
persistence (i.e., γ = 20, α = β = 0.3); a moderately risk-averse individual with a low degree of habit
persistence (i.e., γ = 10, α = 0.2, β = 0.1), and a highly risk-averse individual with a low degree of
habit persistence (i.e., γ = 20, α = 0.2, β = 0.1). The CRRA individual invests 50% of his accumulated
wealth in the stock market (i.e., his relative risk aversion coefficient is equal to 2). Wealth at the age of
25 is for every individual equal to 45. We set the risk-free interest rate r equal to 1%, the market price
of risk λ to 0.2, the stock return volatility σ to 20%, and the subjective rate of time preference δ to 3%.
Individuals adjust consumption once a year.

the degree of habit persistence, the more pronounced the life-cycle investment strategy

will be; see Figure 4(b). A declining equity glide path during both the accumulation

and the retirement phase is also commonly adopted by target date fund managers; see

Morningstar (2017). The portfolio strategy of an individual with habit preferences stands

in sharp contrast to the portfolio strategy of a CRRA individual. Such an individual

implements an age-independent portfolio strategy; see the dotted line in Figure 4(a).35

Figure 4(a) also shows that the portfolio strategy of an individual with habit

preferences hardly varies with the state of the economy, especially at higher ages.36 The

35We note that a CRRA individual invests a constant share of total wealth, which equals the sum of
financial wealth and human capital, in the risky stock.

36A state-independent portfolio strategy has three key advantages for annuity providers. First, an
annuity provider can implement the portfolio strategy without much effort: he does not have to
monitor any state variables. Second, an annuity with a state-independent portfolio strategy is easy
to communicate as the equity glide path is known at inception. Third, the individual typically achieves
a prosperous expected payout stream at an affordable price. Indeed, if an annuity provider offers an
annuity with a state-dependent portfolio strategy, then this portfolio strategy is often designed such that
it protects customers against losses or locks in investment gains. While attractive from the viewpoint of
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portfolio strategy is not completely state-independent: while the sensitivity qh and

volatility Σh of future consumption are fully state-independent due to the constant

relative risk aversion property, a shock to the economy alters the shape of the median

consumption stream (see Figure 2). In particular, long horizons benefit relatively more

from a positive shock, while, on the other hand, short horizons suffer relatively less from

a negative shock. As a result, the value weights Vt,h/Vt in (32) change following a shock.

However, this effect is small (second-order), so that the portfolio strategy is nearly

insensitive to economic shocks.
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(b) Comparative Statics

Figure 4: Investment strategy. Panel A shows summary statistics of the investment strategy of
an individual whose preferences exhibit internal habit formation (with preference parameters γ = 10,
α = 0.3, and β = 0.3). Panel B illustrates how internal habit formation affects the median investment
strategy. This panel considers four different types of individuals: a moderately risk-averse individual
with a high degree of habit persistence (i.e., γ = 10, α = β = 0.3), a highly risk-averse individual with a
high degree of habit persistence (i.e., γ = 20, α = β = 0.3); a moderately risk-averse individual with a
low degree of habit persistence (i.e., γ = 10, α = 0.2, β = 0.1), and a highly risk-averse individual with
a low degree of habit persistence (i.e., γ = 20, α = 0.2, β = 0.1). Wealth at the age of 25 is for every
individual equal to 45. We set the risk-free interest rate r equal to 1%, the market price of risk λ to
0.2, the stock return volatility σ to 20%, and the subjective rate of time preference δ to 3%. Individuals
adjusts consumption once a year.

Table 1 shows the (median) year-on-year volatility of accumulated wealth for various

ages. The year-on-year consumption volatility is always equal to 2%, irrespective of

the individual’s current age.37 With ratio internal habit formation, the year-on-year

consumption volatility is smaller than the year-on-year volatility of accumulated wealth.

avoiding losses, the flip side of this investment behavior is that upward potential can be rather limited.
37We note that the year-on-year consumption volatility is given by λ/(γσ) · σ (see Eqn. (29)). Hence,

assuming λ = σ = 0.2 and γ = 10, we find that the year-on-year consumption volatility is equal to 2%.
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We find that the degree of habit persistence largely determines the share of accumulated

wealth invested in the risky stock, while the individual’s coefficient of relative risk aversion

largely determines the degree of variability of current consumption. As a result, given a

certain degree of relative risk aversion, an individual with habit preferences invests more

in the stock market early in life than an individual with conventional CRRA preferences.

An individual with habit preferences translates a stock return shock not only in current

consumption but also in future growth rates of consumption. This enables the individual

to take a relatively risky position in the stock market at young ages.

Age Median Year-on-Year Volatility of Wealth (%)

25 18.63
35 16.42
45 13.93
55 11.09
65 7.94
75 4.60
83 2.00

Table 1: Median year-on-year volatility of wealth. The table reports the median year-on-year
volatility of wealth for various ages. The year-on-year consumption volatility is always equal to 2%,
irrespective of the individual’s age. The individual’s preference parameters are: γ = 10, α = 0.3, and
β = 0.3. Wealth at the age of 25 is equal to 45. We set the risk-free interest rate r equal to 1%,
the market price of risk λ to 0.2, the stock return volatility σ to 20%, and the subjective rate of time
preference δ to 3%. The individual adjusts consumption once a year.

5 Internal Habits and Stochastic Interest Rates

This section explores the implications of a stochastic interest rate for the optimal

consumption and portfolio choice of an individual with ratio internal habit preferences.

We assume that the economy consists of three assets: one (locally) risk-free asset, a risky

stock, and a risky zero-coupon bond with time to maturity T1. The price of the risk-free
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asset, Bt, and the (2× 1)-vector of risky asset prices, St, satisfy38

dBt

Bt

= rt dt, (33)

dSt
St

= µt dt+ σt dWt, (34)

where the risk-free interest rate rt follows an Ornstein-Uhlenbeck process, i.e.,

drt = κ (r̄ − rt) dt+

[
σrρ

σr
√

1− ρ2

]>
dWt, (35)

and µt and σt are defined as follows:

µt =

[
rt + λ1σS

rt − σrDT1

(
λ1ρ+ λ2

√
1− ρ2

)] , σt =

[
σS 0

−σrDT1ρ −σrDT1

√
1− ρ2

]
. (36)

Here, κ ≥ 0 denotes the mean reversion coefficient, r̄ corresponds to the long-term interest

rate, σr > 0 stands for the interest rate volatility, −1 ≤ ρ ≤ 1 models the correlation

between the interest rate and the risky stock price, σS > 0 represents the stock return

volatility, and DT1 = 1
κ

(
1− e−κT1

)
denotes the interest rate sensitivity of the bond. The

market prices of risk associated with the two Brownian increments are given by λ1 and

λ2. Appendix A proves the following theorem.

Theorem 5.1. Consider an individual with lifetime utility (23) and habit formation

process (8) who solves the consumption and portfolio choice problem (18). Assume that

the interest rate rt satisfies (35) and that the economy consists of a (locally) risk-free

asset, a stock, and a zero-coupon bond with time to maturity T1. Let the dynamics of the

risky assets be given by (34). Then the optimal amounts of wealth invested in the stock

and bond are given by

π∗1,t = − 1

σS

∂Vt

∂ log M̂t

1

Vt
·

(
λ̂1,t −

ρ√
1− ρ2

λ̂2,t

)
· At, (37)

π∗2,t =
λ̂2,t

σr
√

1− ρ2DT1

· ∂Vt

∂ log M̂t

1

Vt
· At −

1

DT1

· ∂Vt
∂rt

, (38)

38We note that this economy emerges as a special case of the economy considered by Brennan and Xia
(2002).
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with Vt =
∫ T−t

0
Vt,h dh representing the market value of the future (approximate) optimal

consumption stream {c∗s}t≤s≤T and

λ̂1,t = λ1 + β
σrρD̂tPt
1 + βPt

, (39)

λ̂2,t = λ2 + β
σr
√

1− ρ2D̂tPt
1 + βPt

, (40)

with M̂t and Pt given by (19) and (20), respectively, and D̂t defined in Appendix A (see

(75)).

Figure 5(a) shows the first component of the bond portfolio weight π∗2,t/At (see (38))

as a function of age. We call this component the speculative bond portfolio weight. Two

counteracting forces determine how this speculative weight evolves over the individual’s

life cycle. On the one hand, the available time to incorporate a speculative shock into

future consumption declines with age. As a result, the speculative demand decreases as

the individual becomes older. A similar reasoning applies to the stock portfolio weight;

see Section 4.5. On the other hand, the older the individual, the more sensitive the

individual’s relative consumption choice ĉ ∗t (typically) is to interest rate shocks; see Eqn.

(78) in Appendix A which shows that λ̂2,t/γ models the interest rate sensitivity of ĉ ∗t .

Note that λ̂2,t becomes more negative as the individual ages. This causes the speculative

demand to increase with age. The first effect dominates the second effect in Figure 5(a).

Figure 5(b) shows the second component of the bond portfolio weight π∗2,t/At (see

again (38)) as a function of age. We call this component the hedging bond portfolio

weight. The value of the hedging weight is also the result of two counteracting forces:

a horizon effect and a substitution effect. On the one hand, the longer the horizon

h, the larger the impact of a shock in the interest rate will be on the price of future

consumption. This causes the hedging portfolio weight to decrease over the life cycle.

On the other hand, we find a new effect that causes the hedging bond portfolio weight

to increase over the life cycle. We can explain this effect by the fact that the willingness

of a habit-forming individual to substitute consumption over time decreases with age.

Indeed, as the individual ages, the duration of remaining lifetime consumption declines,

and hence the current habit level determines to a greater extent future consumption

levels. Jointly, these two effects lead to a hump-shaped pattern. Finally, we note that

the second effect may explain why not many young individuals include long-terms bonds

in their investment portfolios; see Morningstar (2017).
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Figure 5: Portfolio choice with stochastic interest rates. Panel A illustrates the median
speculative bond portfolio weight (with and without habit formation) as a function of age. We assume
that the individual invests wealth in a zero-coupon bond with a fixed time to maturity of 10 (i.e., T1 = 10).
Panel B illustrates the median hedging bond portfolio weight (with and without habit formation) as a
function of age. The individual’s preference parameters are as follows: γ = 10, α = 0.3, and β = 0.3
(for the case of no habit formation, we have α = β = 0). We set the long-term interest rate r̄ equal
to 1%, the mean reversion parameter κ to 0.1, the interest rate volatility σr to 2%, the market price of
interest rate risk λ2 to -0.2, the market price of stock market risk λ1 to 0.2, the stock return volatility
σS to 20%, and the subjective rate of time preference δ to 3%. The individual adjusts consumption once
a year. Note that part of the individual’s wealth is invested in the money market account.

6 Internal Habits and Epstein-Zin Utility

As shown in Appendix C, an individual with habit preferences prefers

(unrealistically) high unconditional median growth rates of log consumption (especially

at high ages) except when his time preference rate δ is excessive.39 This section

therefore considers a utility specification that disentangles the elasticity of intertemporal

substitution from the coefficient of relative risk aversion. Under this extended

preference model, quite remarkably, median consumption growth can be low or

moderate even when the individual’s time preference rate δ takes on reasonable values.

6.1 Utility Specification

We consider an individual with Epstein-Zin utility in terms of relative consumption.

Let {Ut}0≤t≤T be the utility process. We assume that {Ut}0≤t≤T satisfies the following

39Indeed, as already pointed out by Deaton (1992), an individual with habit preferences derives utility
not only from consumption levels but also from consumption growth.
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integral equation (0 ≤ t ≤ T ):

Ut

( c
h

)
= Et

[∫ T

t

f

(
cs
hs
, Us

)
ds

]
. (41)

Here, Et denotes the expectation conditional upon information at time t. The

intertemporal aggregator f is assumed to be given by40

f

(
ct
ht
, Ut

)
= (1 + ζ)


(
ct
ht

)ϕ
ϕ
|Ut|

ζ
1+ζ − δUt

 . (42)

Here, ζ > −1 and ϕ < min {1, 1/ (1 + ζ)} are preference parameters. We refer to (42) as

the Kreps-Porteus aggregator (Kreps and Porteus (1978)).41 The individual maximizes

U0

(
c
h

)
(see (41)) with f

(
ct
ht
, Ut

)
given by (42) subject to the habit process (8) and the

dynamic budget constraint (7).

6.2 Dynamic Consumption and Portfolio Choice

We can solve the individual’s optimization problem by first invoking our pathwise

approximation approach and next the approach of Schroder and Skiadas (1999). The

following theorem presents the (approximate) optimal consumption choice.

Theorem 6.1. Consider an individual with utility process (41), intertemporal aggregator

(42) and habit formation process (8) who solves the consumption and portfolio choice

problem (18). Assume constant investment opportunities (i.e., rt = r, µt = µ, σt = σ

and λt = λ for all t). Let h∗t be the individual’s habit level implied by substituting the

individual’s optimal past relative consumption choices ĉ ∗s (s ≤ t) into (15) and let z

be a scaling parameter associated with the static budget constraint in (18). Then the

40If ϕ = 0, then (42) reduces to f (ct/ht, Ut) = (1 + ζUt) [log {ct/ht} − (δ/ζ) log {1 + ζUt}].
41If ζ = 0 and the habit level ht equals unity (i.e., α = β = 0), then f (ct/ht, Ut) reduces to

f

(
ct
ht
, Ut

)
=

1

ϕ
cϕt − δUt. (43)

Eqn. (41) is then equivalent to the additive utility specification

Ut

( c
h

)
= Et

[∫ T

t

e−δ(s−t)
1

ϕ
cϕs ds

]
. (44)
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individual’s (approximate) optimal consumption choice c ∗t is given by

c ∗t = h∗t z exp

{∫ t

0

(
ψ

[
r̂s +

1

2

λ2

γ
− δ
]

+
1

2

λ2 (γ − 1)

γ2

)
ds+

λ

γ

∫ t

0

dWs

}
, (45)

where ψ = 1/ (1− ϕ) and γ = 1− ϕ (1 + ζ). The scaling parameter z ≥ 0 is determined

such that the individual’s original budget constraint holds with equality.

From (45) one may verify that the sensitivity qh and volatility Σh of future

consumption take the same form as in the base-line model (see Section 4). In the

preference model of this section, the parameter ψ models the individual’s willingness to

substitute consumption over time. Relative risk aversion is thus decoupled from the

elasticity of intertemporal substitution. Figure 6 illustrates the median consumption

path as a function of age for an individual whose preferences combine Epstein-Zin

utility with the ratio internal habit model. As in Section 4, we assume α = β = 0.3 and

γ = 10. Figure 6 shows that the growth rates of the individual’s median consumption

path are substantially lower at high ages compared to the case without Epstein-Zin

utility. Indeed, if the elasticity of intertemporal substitution is relatively low (as is the

case in Figure 6 where ψ equals zero), the individual is less willing to substitute current

consumption for future consumption in order to avoid large future habit levels.

The general expression for the (approximate) optimal portfolio choice under Epstein-

Zin utility in an economy with one risky asset remains the same as in Section 4; see, in

particular, Eqn. (32). However, under Epstein-Zin utility, long horizons receive smaller

value weights in the computation of the portfolio strategy compared to the case without

Epstein-Zin utility, as wealth accumulation during retirement is not excessive. As a result,

an individual whose preferences combine Epstein-Zin utility with habit formation invests

less in the risky stock than an individual whose preferences are described by the ratio

internal habit model without Epstein-Zin utility; see Figure 7 which shows the reduction

in the share of wealth invested in the risky stock as a result of superimposing Epstein-Zin

utility to our base-line model.

7 Accuracy of the Approximation Method

The consumption and portfolio strategies presented in Sections 4, 5 and 6 are exact

only in the case when β = 0 and/or α = ∞. In all other cases, the consumption and

portfolio strategies are approximate based upon linearizing the individual’s static budget
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Figure 6: Median consumption path. The figure illustrates the median consumption path as a
function of age for an individual whose preferences combine Epstein-Zin utility with the ratio internal
habit model. The preference parameters are: ψ = 0, γ = 10, α = 0.3 and β = 0.3. Wealth at the
age of 25 is equal to 45. For comparison purposes, we also plot the median consumption path for the
case without Epstein-Zin utility; see the dotted line. We set the risk-free interest rate r equal to 1%,
the market price of risk λ to 0.2, the stock return volatility σ to 20%, and the subjective rate of time
preference δ to 3%. The individual adjusts consumption once a year.

constraint in (16) around the relative consumption trajectory {ĉt}0≤t≤T = x (x > 0). This

section analyzes the approximation error induced by applying a pathwise linearization to

the static budget constraint.

We consider an individual whose preferences are represented by (41) with aggregator

(42) and habit formation process (8). We determine the genuine optimal consumption

choice copt
t and optimal portfolio choice πopt

t by using the method of backward

induction; Appendix D provides details on the numerical solution technique. We

evaluate the performance of the approximate optimal consumption choice c∗t by

measuring the relative decline in certainty equivalent consumption.42 Table 2 reports

our results. We find that the approximation error is a decreasing function of γ, and an

42The certainty equivalent of an uncertain consumption strategy is defined to be the constant
consumption level that yields indifference to the uncertain consumption strategy. The certainty
equivalent consumption choice ce always exists if α ≥ β. In particular, lifetime utility U (c/h) is increasing

in certainty equivalent consumption ce if β
∫ T
0
e−αt dt ≤ 1. If T is large, then

∫ T
0
e−αt dt ≈ 1

α . Hence,

we can always compute (for any T ) the certainty equivalent consumption choice ce if β
α ≤ 1.

28

 Electronic copy available at: https://ssrn.com/abstract=3093088 



30 40 50 60 70 80

0

1

2

3

4

5

6

Figure 7: Reduction in risky stock portfolio weight. The figure illustrates the reduction in the
share of wealth invested in the risky stock (in %) as a result of superimposing Epstein-Zin utility to our
base-line model as a function of age. The preference parameters are: ψ = 0, γ = 10, α = β = 0.3 (solid
line) and ψ = 1/20, γ = 10, α = β = 0.3 (dash-dotted line). Wealth at the age of 25 is equal to 45. We
set the risk-free interest rate r equal to 1%, the market price of risk λ to 0.2, the stock return volatility
σ to 20%, and the subjective rate of time preference δ to 3%. The individual adjusts consumption once
a year.

increasing function of β. Indeed, if γ is large, the habit level closely tracks consumption.

Also, if β is small, habit formation is rather limited. In nearly all cases, the

approximation error is smaller than 1%. Furthermore, we note that Table 2 only

considers cases for which α equals β. If β is smaller than α, the welfare loss will be

lower. In particular, in the limiting case β = 0, the welfare loss will vanish. For

illustration purposes, Figure 8 also compares, for three different economic scenarios, the

optimal consumption path with the approximate consumption path. We observe a close

match. To assess the accuracy of the approximation method further, Figure 9 shows

copt
t /hopt

t for various sets of parameter values. We note that if copt
t /hopt

t is close to one,

the approximation error is small. We find that the histograms are centered around one

and that, as expected, the histogram width decreases when γ goes up.

Finally, we compute the minimum welfare loss associated with implementing the

Merton consumption strategy (Merton (1969)). This consumption strategy is

characterized by the degree of relative risk aversion of the Merton individual. We
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Figure 8: Consumption trajectories. The figure compares, for three different economic scenarios,
the optimal consumption path with the approximate consumption path. The preference parameters are:
ψ = 1/10, γ = 10, α = 0.3 and β = 0.3. Initial wealth equals 15. We set the terminal time T equal to
20, the risk-free interest rate r equal to 1%, the market price of risk λ to 0.2, the stock return volatility
σ to 20%, and the subjective rate of time preference δ to 3%. The individual adjusts consumption once
a year.

assume that the habit-forming individual is restricted to implement the Merton

consumption strategy. He chooses the relative risk aversion coefficient in the Merton

model such that the difference between his utility associated with implementing the

Merton consumption strategy and his utility associated with implementing the

approximate optimal consumption strategy is minimal. Table 3 reports our results for

various sets of parameter values. We find that the minimum welfare loss due to the

Merton consumption strategy is likely a factor 10 larger than the welfare loss associated

with our approximation method.

8 Concluding Remarks

This paper has explored how an individual who derives utility from the ratio between

his consumption and an endogenous habit should consume and invest over the life cycle.

It is well-known that analytical closed-form solutions to multiplicative internal habit
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γ ψ α β δ A0 Welfare Loss (%)

6 1/6 0.30 0.30 0.03 15 1.0012
8 1/8 0.30 0.30 0.03 15 0.3967
10 1/10 0.30 0.30 0.03 15 0.1926
12 1/12 0.30 0.30 0.03 15 0.1006
14 1/14 0.30 0.30 0.03 15 0.0642

(a) Sensitivity with respect to the Relative Risk Aversion Coefficient γ

γ ψ α β δ A0 Welfare Loss (%)

10 1/10 0.20 0.20 0.03 15 0.0764
10 1/10 0.25 0.25 0.03 15 0.1237
10 1/10 0.30 0.30 0.03 15 0.1926
10 1/10 0.35 0.35 0.03 15 0.2827
10 1/10 0.40 0.40 0.03 15 0.3826

(b) Sensitivity with respect to the Degree of Habit Formation α = β

γ ψ α β δ A0 Welfare Loss (%)

10 1/10 0.30 0.30 0.01 15 0.2090
10 1/10 0.30 0.30 0.02 15 0.2037
10 1/10 0.30 0.30 0.03 15 0.1926
10 1/10 0.30 0.30 0.04 15 0.1897
10 1/10 0.30 0.30 0.05 15 0.1783

(c) Sensitivity with respect to the Time Discount Rate δ

γ ψ α β δ A0 Welfare Loss (%)

10 1/10 0.30 0.30 0.03 13 0.1927
10 1/10 0.30 0.30 0.03 14 0.1881
10 1/10 0.30 0.30 0.03 15 0.1926
10 1/10 0.30 0.30 0.03 16 0.2081
10 1/10 0.30 0.30 0.03 17 0.2610

(d) Sensitivity with respect to the Initial Wealth Level A0

γ ψ α β δ A0 Welfare Loss (%)

10 1/14 0.30 0.30 0.03 15 0.2773
10 1/12 0.30 0.30 0.03 15 0.2506
10 1/10 0.30 0.30 0.03 15 0.1926
10 1/8 0.30 0.30 0.03 15 0.4286
10 1/6 0.30 0.30 0.03 15 1.2682

(e) Sensitivity with respect to the Preference Parameter ψ

Table 2: Welfare losses. The table reports the welfare losses (in terms of the relative decline in
certainty equivalent consumption) associated with implementing the approximate optimal consumption
choice (24). We set the terminal time T equal to 20, the risk-free interest rate r to 1%, the market price
of risk λ to 0.2, and the stock return volatility σ to 20%. The individual adjusts consumption once a
year.
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γ ψ α β δ A0 Welfare Loss (%)

6 1/6 0.30 0.30 0.03 15 2.8751
14 1/14 0.30 0.30 0.03 15 2.5241
10 1/10 0.30 0.30 0.03 15 2.3061
10 1/10 0.20 0.20 0.03 15 1.3031
10 1/10 0.40 0.40 0.03 15 3.3414

Table 3: Minimum welfare losses. The table reports the minimum welfare losses (in terms of
the relative decline in certainty equivalent consumption) associated with implementing the Merton
consumption strategy. We set the terminal time T equal to 20, the risk-free interest rate r to 1%,
the market price of risk λ to 0.2, and the stock return volatility σ to 20%. The individual adjusts
consumption once a year.

models do not exist in general. Therefore, we have developed a general solution procedure

based on a linearization of the static budget constraint around the endogenous habit level

enabling us to transform consumption and portfolio problems with multiplicative internal

habits into approximate consumption and portfolio problems without habits.

We have applied our general solution procedure to three important cases of

multiplicative habit formation. The first case considers a constant investment

opportunity set and assumes that the individual has additive preferences in terms of

relative consumption; see Section 4. We have shown that the individual’s preferences

induce clearly interpretable implications: the coefficient of relative risk aversion controls

the year-on-year volatility of current consumption and the strength of habit persistence

controls the extent to which a stock return shock impacts future growth rates of

consumption. The second case is an extension that allows for stochastic interest rates

and stock-bond investments; see Section 5. We have shown that the speculative bond

portfolio weight typically declines with age and that the hedging bond portfolio weight

displays a hump-shaped pattern over the life cycle. Finally, we have studied an

individual whose preferences combine ratio internal habit formation with Epstein-Zin

utility; see Section 6. Interestingly, median consumption now no longer grows at

unrealistically high rates at high ages and risky assets become less attractive.
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(a) γ = 10, α = β = 0.3
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(b) γ = 10, α = β = 0.2
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(c) γ = 5, α = β = 0.3
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(d) γ = 5, α = β = 0.2
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(e) γ = 20, α = β = 0.3
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(f) γ = 20, α = β = 0.2

Figure 9: Accuracy of the pathwise approximation method. The figure illustrates coptt /hoptt

for various sets of parameter values. We assume t = 10. We set the terminal time T equal to 20, the
individual’s initial wealth to 15, the risk-free interest rate r to 1%, the market price of risk λ to 0.2, the
stock return volatility σ to 20%, and the subjective rate of time preference δ to 3%.

33

 Electronic copy available at: https://ssrn.com/abstract=3093088 



A Proofs

A.1 Proof of Theorem 3.1

This appendix discusses how to approximate the left-hand side of the new static

budget constraint in (16) around the constant consumption trajectory {ĉt}0≤t≤T = x for

some positive x. (In the main text we make the simplifying assumption that {ĉt}0≤t≤T =

1.) The partial derivative of
∫ T

0
Mthtĉt dt with respect to the current relative consumption

choice ĉt is given by

∂
(∫ T

0
Mthtĉt dt

)
∂ ĉt

= Mtht dt+

∫ T

t

Ms
∂hs
∂ ĉt

ĉs ds. (46)

The partial derivative of the future habit level hs (s ≥ t) with respect to the current

relative consumption choice ĉt is given by (this equation follows from differentiating (15)

with respect to ĉt)
∂hs
∂ ĉt

= β exp {−(α− β)(s− t)} hs
ĉt

dt. (47)

Substituting (47) into (46) and evaluating (46) around the constant consumption

trajectory {ĉt}0≤t≤T = x, we arrive at

∂
(∫ T

0
Mthtĉt dt

)
∂ ĉt

∣∣∣∣∣
{ĉt}0≤t≤T=x

= Mtx
Qt−1 dt+ β

(∫ T

t

Msx
Qs−1e−(α−β)(s−t) ds

)
dt. (48)

Here, we define

Qt := 1 +
β

α− β
[1− exp {−(α− β)t}] . (49)

By virtue of Taylor series expansion up to the first order, we have

∫ T

0

Mthtĉt dt ≈
∫ T

0

Mtx
Qt dt+

∫ T

0

∂
(∫ T

0
Mthtĉt dt

)
∂ ĉt

∣∣∣∣∣
{ĉt}0≤t≤T=x

(ĉt − x) . (50)
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Substituting (48) into (50), we arrive at

∫ T

0

Mthtĉt dt ≈
∫ T

0

Mtx
Qt dt+

∫ T

0

[
Mtx

Qt−1

+ β

(∫ T

t

Msx
Qs−1e−(α−β)(s−t) ds

)]
(ĉt − x) dt.

(51)

Hence, we can approximate the left-hand side of the new static budget constraint in (16)

by

E
[∫ T

0

Mthtĉt dt

]
≈ E

[∫ T

0

Mtx
Qt dt+

∫ T

0

[
Mtx

Qt−1

+ β

(∫ T

t

Msx
Qs−1e−(α−β)(s−t) ds

)]
(ĉt − x) dt

]

= E

[∫ T

0

Mtx
Qt dt+

∫ T

0

Et

{[
Mtx

Qt−1

+ β

(∫ T

t

Msx
Qs−1e−(α−β)(s−t) ds

)]
(ĉt − x)

}
dt

]

= E

[∫ T

0

Mtx
Qt dt+

∫ T

0

Mtx
Qt−1Et

{[
1

+ β

(∫ T

t

Ms

Mt

xQs−Qte−(α−β)(s−t) ds

)]
(ĉt − x)

}
dt

]

= E
[∫ T

0

Mtx
Qt dt+

∫ T

0

Mtx
Qt−1 (1 + βPt) (ĉt − x) dt

]
= −βE

[∫ T

0

Mtx
QtPt dt

]
+ E

[∫ T

0

Mtx
Qt−1 (1 + βPt) ĉt dt

]
.

(52)

Here,

Pt = Et
[∫ T

t

Ms

Mt

xQs−Qte−(α−β)(s−t) ds

]
. (53)

We can now establish the approximate optimization problem (18) as follows.

1. First, we replace the left-hand side of the new static budget constraint in (16) by

(52).
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2. Second, we eliminate the constant term −βE
[∫ T

0
Mtx

QtPt dt
]

from (52). This term

does not play a role in determining the first-order optimality condition.

3. Finally, we redefine initial wealth A0 to be Â0 such that the approximate optimal

consumption strategy {c∗t}0≤t≤T = {h∗t ĉ ∗t }0≤t≤T is budget-feasible. That is,

E
[∫ T

0

Mth
∗
t ĉ
∗
t dt

]
= A0. (54)

Straightforward computations show that the initial wealth Â0 associated with the

approximate problem is then given by

Â0 = A0 + E
[∫ T

0

M̂tĉ
∗
t dt

]
− E

[∫ T

0

Mth
∗
t ĉ
∗
t dt

]
. (55)

Here, M̂t = Mtx
Qt−1 (1 + βPt). Note that the value of Â0 can only be determined

after the problem has been solved.

A.2 Proof of Theorem 4.1

Define M̂t = Mtx
Qt−1 (1 + βPt). The Lagrangian L is given by

L = E
[∫ T

0

e−δt
1

1− γ
(ĉt)

1−γ dt

]
+ y

(
Â0 − E

[∫ T

0

M̂tĉt dt

])
=

∫ T

0

E
[
e−δt

1

1− γ
(ĉt)

1−γ − yM̂tĉt

]
dt+ yÂ0.

(56)

Here, y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint.

The individual aims to maximize e−δt 1
1−γ (ĉt)

1−γ − yM̂tĉt. The approximate optimal

relative consumption choice ĉ ∗t satisfies the following first-order optimality condition:

e−δt (ĉ ∗t )−γ = yM̂t. (57)

After solving the first-order optimality condition, we obtain the following maximum:

ĉ ∗t =
(
eδtyM̂t

)− 1
γ
. (58)

Hence (use (17)),

c∗t = h∗t

(
yeδtM̂t

)− 1
γ
. (59)
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A verification that the optimal solution to the Lagrangian equals the optimal solution to

the static problem (see, e.g., Karatzas and Shreve, 1998, p. 103) completes the proof.

A.3 Derivation of (25) and (29)

This appendix writes the individual’s consumption choice c∗t in terms of unexpected

past stock return shocks. We can write the stochastic discount factor

M̂t = Mtx
Qt−1 (1 + βPt) as follows (this follows from applying Itô’s lemma to

M̂t = f (Mt, Pt, Qt) = Mtx
Qt−1 (1 + βPt)):

M̂t = M̂0 exp

{
−
∫ t

0

(
r̂s +

1

2
λ2

)
ds

}
exp

{
−λ
∫ t

0

dWs

}
, (60)

where

r̂s = β +
r̃s − αβPs
1 + βPs

(61)

with r̃s = r − βe−(α−β)s log x.

Substituting (60) into (24), we arrive at

ĉ ∗t =
c∗t
h∗t

= exp

{
1

γ

∫ t

0

(
r̂s +

1

2
λ2 − δ

)
ds+

ȳ

γ

}
exp

{
λ

γ

∫ t

0

dWs

}
. (62)

Here, ȳ = −
(

log y + log M̂0

)
.

We can write the habit level h∗t as follows:

h∗t = exp

{∫ t

0

β exp {−(α− β)(t− s)} log ĉ ∗s ds

}
= exp

{∫ t

0

β exp {−(α− β)(t− s)}[
1

γ

∫ s

0

(
r̂u +

1

2
λ2 − δ

)
du+

ȳ

γ
+
λ

γ

∫ s

0

dWu

]
ds

}
= exp

{∫ t

0

(
1

γ
Qt−s −

1

γ

)(
r̂s +

1

2
λ2 − δ

)
ds

}
× exp

{(
1

γ
Qt −

1

γ

)
ȳ +

∫ t

0

(
λ

γ
Qt−s −

λ

γ

)
dWs

}
.

(63)
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Hence,

c∗t = h∗t exp

{
1

γ

∫ t

0

(
r̂s +

1

2
λ2 − δ

)
ds+

ȳ

γ

}
exp

{
λ

γ

∫ t

0

dWs

}
= exp

{
1

γ

∫ t

0

Qt−s

(
r̂s +

1

2
λ2 − δ

)
ds+

1

γ
Qtȳ +

λ

γ

∫ t

0

Qt−s dWs

}
= (c∗0)Qt exp

{
1

γ

∫ t

0

Qt−s

(
r̂s +

1

2
λ2 − δ

)
ds+

λ

γ

∫ t

0

Qt−s dWs

}
.

(64)

It follows from (64) that

qt−s =
λ

γσ
Qt−s (65)

models the sensitivity of log consumption log c∗t to the unexpected stock return shock

σ dWs.

Subtracting log c∗t+h from log c∗t and taking the limit h→ 0, we arrive at (29).

A.4 Proof of Theorem 4.2

Straightforward computations show that

Vt,h = Et
[
Mt+h

Mt

c∗t+h

]
= c∗tGt,hEt

[
exp

{
−
∫ h

0

(
r +

1

2
λ2

)
dv − λ

∫ h

0

dWt+h−v

}
× exp

{
1

γ

∫ h

0

Qv

(
r̂t+h−v +

1

2
λ2 − δ

)
dv +

λ

γ

∫ h

0

Qv dWt+h−v

}]
= c∗tGt,hCt,h,

(66)

where

Ct,h = exp

{
−
∫ h

0

(
r −Qv

1

γ

[
r̂t+h−v +

1

2
λ2 − δ

]
+Qv

λ2

γ
− 1

2
Q2
v

λ2

γ2

)
dv

}
, (67)

Gt,h = (c∗0)(Qt+h−Qt) exp

{
1

γ

∫ t

0

(Qt+h−s −Qt−s)

(
r̂s +

1

2
λ2 − δ

)
ds

}
× exp

{
λ

γ

∫ t

0

(Qt+h−s −Qt−s) dWs

}
.

(68)

Eqn. (66) shows that the term Vt,h/c
∗
t consists of two factors. The factor Gt,h represents

past stock return shocks that the individual absorbs into future growth rates of (median)
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consumption. This factor equals unity if the individual directly absorbs unexpected stock

returns shocks into current consumption. The factor Ct,h summarizes the impacts of the

unconditional growth rates of median consumption and the future (uncertain) rates of

return on the market value of future consumption.

It follows from Itô’s lemma that log Vt = log
[∫ T−t

0
Vt,h dh

]
satisfies

d log Vt = (. . .) dt+
λ

γ

∫ T−t

0

Qh

Vt,h
Vt

dh · dWt, (69)

suppressing the drift term for brevity. It also holds that (this follows from applying Itô’s

lemma to the dynamic budget constraint (7))

d logAt = (. . .) dt+ σ · πt
At
· dWt. (70)

Setting Eqn. (70) equal to Eqn. (69) and solving for the approximate optimal portfolio

choice, we arrive at (32).

A.5 Proof of Theorem 5.1

We first write the individual’s consumption choice c∗t in terms of unexpected past

stock return and interest rate shocks. The stochastic discount factor M̂t = Mt (1 + βPt)

is given by (this follows from applying Itô’s lemma to M̂t = f (Mt, Pt) = Mt (1 + βPt)):
43

M̂t = M̂0 exp

{
−
∫ t

0

(
r̂s +

1

2

∣∣∣∣∣∣λ̂s∣∣∣∣∣∣2) ds

}
exp

{
−λ̂>s

∫ t

0

dWs

}
, (71)

where

r̂s = β +
rs − αβPs
1 + βPs

, (72)

λ̂1,s = λ1 + β
σrρD̂sPs
1 + βPs

, (73)

λ̂2,s = λ2 + β
σr
√

1− ρ2D̂sPs
1 + βPs

, (74)

with

D̂s =

∫ T−s

0

αs,hDh dh. (75)

43For the sake of simplicity, we assume x = 1.
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Here,

Dh =
1− exp {−κh}

κ
, (76)

αs,h =
e
−
∫ h
0

(
α−β+rs+κDu(r̄−rs)−σrDu

(
λ1ρ+λ2

√
1−ρ2

)
− 1

2
σ2
rD

2
u

)
du∫ T−s

0
e
−
∫ h
0

(
α−β+rs+κDu(r̄−rs)−σrDu

(
λ1ρ+λ2

√
1−ρ2

)
− 1

2
σ2
rD

2
u

)
du

dh
. (77)

Substituting (71) into (24), we arrive at

ĉ ∗t =
c∗t
h∗t

= exp

{
1

γ

∫ t

0

(
r̂s +

1

2

∣∣∣∣∣∣λ̂s∣∣∣∣∣∣2 − δ) ds+
ȳ

γ

}
exp

{
1

γ
λ̂>s

∫ t

0

dWs

}
. (78)

Here, ȳ = −
(

log y + log M̂0

)
.

We express the habit level h∗t as follows:

h∗t = exp

{∫ t

0

β exp {−(α− β)(t− s)} log ĉ ∗s ds

}
= exp

{∫ t

0

(
1

γ
Qt−s −

1

γ

)(
r̂s +

1

2

∣∣∣∣∣∣λ̂s∣∣∣∣∣∣2 − δ) ds

}
× exp

{(
1

γ
Qt −

1

γ

)
ȳ +

∫ t

0

(
1

γ
Qt−sλ̂

>
s −

1

γ
λ̂>s

)
dWs

}
.

(79)

Hence,

c∗t = h∗t exp

{
1

γ

∫ t

0

(
r̂s +

1

2

∣∣∣∣∣∣λ̂s∣∣∣∣∣∣2 − δ) ds+
ȳ

γ

}
exp

{
1

γ
λ̂>s

∫ t

0

dWs

}
= (c∗0)Qt exp

{
1

γ

∫ t

0

Qt−s

(
r̂s +

1

2

∣∣∣∣∣∣λ̂s∣∣∣∣∣∣2 − δ) ds+
1

γ

∫ t

0

Qt−sλ̂
>
s dWs

}
.

(80)

The market value at time t of the future consumption stream {c∗s}t≤s≤T , i.e.,

Vt =
∫ T−t

0
Vt,h dh, is a function of the state variables rt and log M̂t. It now follows from

Itô’s lemma that

d log Vt = (. . .) dt−

(
λ̂1,t

∂Vt

∂ log M̂t

1

Vt
− σrρ

∂Vt
∂rt

1

Vt

)
dW1,t

−

(
λ̂2,t

∂Vt

∂ log M̂t

1

Vt
− σr

√
1− ρ2

∂Vt
∂rt

1

Vt

)
dW2,t.

(81)
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It also holds that

d logAt = (. . .) dt+

(
π1,t

At
σS −

π2,t

At
σrρDT1

)
dW1,t −

π2,t

At
σr
√

1− ρ2DT1 dW2,t. (82)

Setting Eqn. (82) equal to Eqn. (81) and solving for the approximate optimal portfolio

choice, we arrive at (37) and (38).

A.6 Proof of Theorem 6.1

Given Â0, the approximate optimal relative consumption choice ĉ ∗t can be obtained

from Schroder and Skiadas (1999). Finally, the approximate optimal consumption choice

c ∗t follows as in Eqn. (17).

B Uncertain Date of Death

So far we have assumed that the terminal time T is known at the beginning of the life

cycle. However, the individual may also want to know how to drawdown his accumulated

wealth if the terminal time T is equal to his uncertain date of death. This appendix

explores how an uncertain terminal time affects the consumption dynamics (29). We

assume that the individual aims to maximize lifetime utility (23) where T ≥ 0 now

denotes the uncertain adult age at which the individual passes away.

We find that in this setting of uncertain terminal time, the individual’s log

consumption choice log c∗t evolves according to

d log c∗t = g̃t dt+ p̃t dt+
λ

γσ
σ dWt, (83)

which is to be compared to (29). Here,

g̃t =
1

γ

(
r̂t +

1

2
λ2 − δ −Ht

)
, (84)

p̃t = Q′t log c∗0 +
1

γ

∫ t

0

Q′t−sg̃s ds+
λ

γσ

∫ t

0

Q′t−sσ dWs, (85)

with r̂t = β+ (r − αβPt) / (1 + βPt), Ht the force of mortality (hazard rate) at adult age

t, Q′t−s = dQt−s/ dt, and Pt and Qt−s defined in (20) and (26), respectively.44

44We assume no uncertainty in the force of mortality.
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As shown by Eqn. (83), an increase in future consumption now implies two types

of costs. First, the individual prefers to consume sooner rather than later. This effect

is captured by the time preference rate δ. Second, the individual may pass away before

being able to enjoy future consumption. This effect is captured by the force of mortality

Ht. As a result, the median consumption path is less steep compared to the case where

the terminal time T is assumed to be fixed; see Figure 10. In this figure, we compute the

force of mortality using the unisex mortality table for the US population for 2015.

30 40 50 60 70 80

0

2

4

6

8

10

12

Figure 10: Growth rate of median consumption. The figure illustrates the growth rate of median
consumption as a function of age for the case where the terminal time T is equal to the individual’s
uncertain date of death. The individual preferences exhibit internal habit formation (with preference
parameters γ = 10, α = 0.3, and β = 0.3). Survival rates are taken from the Human Mortality Database.
We use the unisex mortality table for the US population for 2015. Wealth at the age of 25 is equal to
45. For comparison purposes, we also plot the growth rate of median consumption for the case with a
fixed date of death; see the dotted line. We set the risk-free interest rate r equal to 1%, the market price
of risk λ to 0.2, the stock return volatility σ to 20%, and the subjective rate of time preference δ to 3%.
The individual adjusts consumption once a year.

42

 Electronic copy available at: https://ssrn.com/abstract=3093088 



B.1 Proof of (83)

The individual’s approximate optimization problem is given by

max
ĉt:0≤t≤Tmax

E
[∫ Tmax

0

e−δte−
∫ t
0 Hs ds 1

1− γ
(ĉt)

1−γ dt

]
s.t. E

[∫ Tmax

0

M̂tĉt dt

]
≤ Â0.

(86)

Here, Tmax denotes the maximum adult age the individual can reach.

The Lagrangian L is given by

L = E
[∫ Tmax

0

e−δte−
∫ t
0 Hs ds 1

1− γ
(ĉt)

1−γ dt

]
+ y

(
Â0 − E

[∫ Tmax

0

M̂tĉt dt

])
=

∫ Tmax

0

E
[
e−δte−

∫ t
0 Hs ds 1

1− γ
(ĉt)

1−γ − yM̂tĉt

]
dt+ yÂ0.

(87)

Here, y ≥ 0 denotes the Lagrange multiplier associated with the static budget

constraint. The individual aims to maximize e−δte−
∫ t
0 Hs ds 1

1−γ (ĉt)
1−γ − yM̂tĉt. The

approximate optimal relative consumption choice ĉ ∗t satisfies the following first-order

optimality condition:

e−δte−
∫ t
0 Hs ds (ĉ ∗t )−γ = yM̂t. (88)

After solving the first-order optimality condition, we obtain the following maximum:

ĉ ∗t =
(
eδte

∫ t
0 Hs dsyM̂t

)− 1
γ
. (89)

Hence (use (17)),

c∗t = h∗t

(
yeδte

∫ t
0 Hs dsM̂t

)− 1
γ
. (90)

We can now derive the consumption dynamics (83) similarly as in the proof of (29).

C Excessive Median Growth Rates of Consumption

We state the following theorem.

Theorem C.1. Suppose that rt is constant (i.e., rt = r) and let r̂t be defined as follows:

r̂t = β + (r − αβPt) / (1 + βPt) . (91)
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Then:

1. The value of r̂t increases as the preference parameter β increases, given fixed α−β.

2. The value of r̂t decreases as the terminal time T increases. In particular, r̂t → r if

T →∞.

Theorem C.1 and the decomposition in (29) imply that current consumption has a

large impact on future habit levels if the preference parameter β is large. Also, the utility

gain of an increase in consumption is smaller when the individual is (relatively) young

(i.e., small t) than when the individual is (relatively) old (i.e., large t). As a result,

an individual with habit preferences prefers (unrealistically) high unconditional median

growth rates of log consumption (especially at high ages) except when his subjective rate

of time preference δ is excessive.

C.1 Proof of Theorem C.1

We first prove that the (partial) derivative of r̂t with respect to β is positive given

fixed α− β.45 Define η = α− β. Substituting α = η + β into (91), we find

r̂t = β +
r − (η + β)βPt

1 + βPt
. (92)

The (partial) derivative of r̂t with respect to β is given by

∂ r̂t
∂β

= 1 +
− (1 + βPt) (η + 2β)Pt − (r − (η + β)βPt)Pt

(1 + βPt)
2

= 1 +
−ηPt − 2βPt − ηβP 2

t − 2 (βPt)
2 − rPt + ηβP 2

t + (βPt)
2

1 + 2βPt + (βPt)
2

= 1 +
−ηPt − 2βPt − (βPt)

2 − rPt
1 + 2βPt + (βPt)

2 .

(93)

Hence,
∂ r̂t
∂β
≥ 0⇔ −ηPt − 2βPt − (βPt)

2 − rPt
1 + 2βPt + (βPt)

2 ≥ −1

⇔ ηPt + 2βPt + (βPt)
2 + rPt ≤ 1 + 2βPt + (βPt)

2

⇔ (r + η)Pt ≤ 1

⇔ 1− exp {−(r + η)(T − t)} ≤ 1.

(94)

45In the derivation of Theorem C.1, we assume x = 1, so that r̃t = r for all t.
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Hence, ∂ r̂t/∂β is positive given fixed α− β.

Finally, we prove that the (partial) derivative of r̂t with respect to T is negative. The

(partial) derivative of r̂t with respect to T is given by

∂ r̂t
∂T

= −r (1 + βPt)
−2 ∂Pt

∂T
− αβ (1 + βPt)

−2 ∂Pt
∂T

. (95)

Using the fact that ∂Pt/∂T is positive, we find that ∂ r̂t/∂T is negative. Furthermore,

simple algebra yields that r̂t = r if T =∞. Here, we use the fact that Pt → 1/(r+α−β)

as T →∞.

D Numerical Solution Method

To assess the accuracy of our pathwise approximation, we also determine the genuine

optimal consumption and portfolio policies using numerical backward induction. Because

we only explore the case α = β, we can reduce the number of state variables from two (i.e.,

wealth level and habit level) to one (i.e., wealth-to-habit ratio). The first step is to specify

discrete points in the state space, called grid points. For each grid point, we determine

the optimal relative consumption choice and the optimal portfolio choice. To determine

the optimal policies, we need to evaluate the utility value for every combination of relative

consumption choice and portfolio choice. The utility value is equal to the sum of current

utility and the discounted expected continuation value. Once we have computed the

utility value for every combination of relative consumption choice and portfolio choice,

we select the maximum utility value. We then use this maximum utility value to solve the

previous period’s maximization problem. This process is iterated backwards in time until

the entire life-cycle problem has been solved. In the last period, the optimal relative

consumption choice and the maximum utility value are given by ĉ opt
T = AT/hT and(

ĉ opt
T

)1−γ
/ (1− γ), respectively. This gives us the terminal condition for the backward

induction procedure. We use Gaussian quadrature to compute expectations. For points

that do not lie on the state space grid, we evaluate the utility level using cubic spline

interpolation.

We now introduce the following notation:

• S: total number of simulations;

• ∆t: time step;

• tn = n∆t for n = 0, . . . ,
⌊
T
∆t

⌋
.

45

 Electronic copy available at: https://ssrn.com/abstract=3093088 



The floor operator b·c rounds a number downward to its nearest integer.

To compute the welfare loss associated with the approximate consumption strategy,

we apply the following steps:

1. We generate S trajectories of the stochastic discount factor (s = 1, . . . ,S):

Ms,tn+1
= Ms,tn − rMs,tn∆t− λMs,tn

√
∆tεs,tn , n = 0, . . . ,

⌊
T

∆t

⌋
. (96)

Here, εs,tn is a standard normally distributed random variable.

2. We compute the approximate relative consumption choice ĉ ∗s,tn and the approximate

portfolio strategy π∗s,tn for s = 1, . . . ,S and n = 0, . . . ,
⌊
T
∆t

⌋
. We note that the

approximate relative consumption choice ĉ ∗s,tn is a function of the stochastic discount

factor M̂s,tn = Ms,tn

(
1 + βPtn

)
. The individual’s lifetime utility U (c/h) can now

be obtained by using the method of numerical backward induction. Note that in

this step we use backward induction only to obtain lifetime utility (we do not use

it to obtain the optimal solutions).

3. We numerically solve for the certainty equivalent consumption ce∗.

4. We compute the optimal consumption strategy copt
s,tn

and the optimal portfolio

strategy πopt
s,tn

for s = 1, . . . ,S and n = 0, . . . ,
⌊
T
∆t

⌋
. Lifetime utility follows from

the backward induction algorithm.

5. We numerically solve for the optimal certainty equivalent consumption ceopt.

6. Finally, we compute the welfare loss l:

l =
ceopt − ce∗

ceopt
. (97)
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