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Over the last few decades, the number of pension plans offering guaranteed lifelong payout

streams has declined significantly due to the high costs these plans impose on insurers. On the other

hand, the number of pension plans offering variable payout streams has grown rapidly.1 These

variable annuity products, however, often do not meet people’s retirement needs as they produce a

volatile, rather than a stable, payout stream. Hence, there is an urgent need to develop alternative

annuity products that are both affordable and adequate, as well as consistent with people’s

preferences.2 To the best of our knowledge, this paper is the first to address these three challenges

simultaneously. More specifically, we propose a new class of variable (i.e., investment-linked)

annuity contracts3 that provides flexibility in tailoring payout streams to individual tastes, while at

the same time our proposed annuity contracts cost (significantly) less than a traditional Defined

Benefit (DB) pension plan.

The payouts from our proposed annuity contracts depend directly on the stock market

performance, as is also the case with existing unit-linked insurance products. However, what is new

is that we allow for buffering of portfolio shocks: the impact of a current portfolio shock on a future

annuity payout is smaller the sooner an annuity payout occurs. Hence, in the presence of buffering of

portfolio shocks, annuity payouts that occur in the near future exhibit a (substantially) lower

annualized volatility than annuity payouts that occur in the distant future, which is in line with

reference-dependent preferences.4 By differentiating between the short-term and the long-term

volatility of annuity payouts, insurers are able to offer an adequate annuity product that provides a

stable payout stream, while at the same time it costs less than a traditional DB pension plan. We

derive annuity prices and the underlying investment strategies in a general financial environment.

The generality of our framework provides flexibility in modelling stock returns and enables insurers

to explore model risk.

An annuity contract featuring buffering of portfolio shocks stands in sharp contrast to a

unit-linked insurance contract in which both short-term and long-term annuity payouts exhibit the

same annualized volatility; see, e.g., Chai et al. (2011) and Maurer et al. (2013b). Consumption and

investment models assuming constant relative risk aversion (CRRA) utility provide a justification for

1See, e.g., Investment Company Institute (2017).
2A variable annuity product is said to be adequate if it provides a sufficiently high expected payout stream.
3This paper does not take guarantees into account when valuing the proposed annuity contracts. For the valuation of

variable annuities with guarantees, see, e.g., Brennan and Schwartz (1976), Milevsky and Posner (2001), Milevsky and
Salisbury (2006), Moenig and Bauer (2015), and Fonseca and Ziveyi (2017).

4Reference-dependence is one the most prevailing empirical regularities in consumption (see Baillon et al. (2017) and
references therein).
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this type of restriction on the risk profile of future annuity payouts; see Merton (1969). However, the

ability of CRRA utility to describe how individuals actually make decisions under risk is known to

be limited. In response, insurers have developed alternative annuity products that aim to be better

aligned with people’s preferences. Indeed, some insurers nowadays offer variable annuities whose

payouts respond sluggishly, rather than directly, to portfolio shocks; see, e.g., Guillén et al. (2006),

Maurer et al. (2013a), and Maurer et al. (2016). These annuities assume that realized investment

returns determine the payout dynamics. This is, however, different from our framework in which the

investment portfolio is derived endogenously from the desired payout stream.5

Our stock return model is a natural generalization of the much celebrated Black and Scholes

model. More specially, we allow standardized stock returns to be distributed according to a

distribution for which we can obtain the characteristic function in an analytical form. This (weak)

assumption on the stock return distribution makes it possible to compute, in closed-from,

arbitrage-free annuity prices and underlying investment strategies that adequately hedge the

liabilities of the annuity contracts. Our stock return model is able to capture several stylized facts of

stock returns such as asymmetry and heavy-tailedness that the Black and Scholes model fails to

explain. Furthermore, the generality of our stock return model enables insurers to explore the impact

of different stock return specifications on the annuity price and the hedging performance.

By buffering portfolio shocks, insurers are able to offer an excessively smooth and excessively

sensitive payout stream without charging high annuity prices or reducing expected annuity payouts.

Indeed, the low year-on-year volatility of the annuity payout implies an excessively smooth payout

stream. Because the current annuity payout responds less than one-to-one to a current portfolio

shock, future changes in the annuity payout also depend on a current portfolio shock. The payout

stream is thus not only excessively smooth but also excessively sensitive. Empirical studies find that

aggregate consumption data also exhibit excess smoothness and excess sensitivity; see, e.g., Flavin

(1981), Deaton (1987), and Campbell and Deaton (1989). Furthermore, an excessively smooth and

excessively sensitive payout stream is consistent with preference models which are based on internal

habit formation and loss aversion; see, e.g., Fuhrer (2000), Pagel (2017), Van Bilsen et al. (2017),

and Van Bilsen et al. (2018). Indeed, according to these preference models, individuals suffer large

5Another difference between our proposed annuity contracts and existing annuity contracts is that the computation of
the actual payouts from existing annuity contracts featuring smoothing of investment returns is often not fully transparent;
see the OECD (2016). Furthermore, insurers may find it difficult to manage the risks inherent to annuity products which
exhibit a nontransparent return smoothing mechanism.
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welfare losses if consumption tomorrow differs (too) much from consumption today.

We develop a framework to manage the risks inherent to our proposed annuity contracts. In

particular, we determine arbitrage-free annuity prices and underlying investment strategies that

adequately offset the risks associated with fluctuations in the annuity prices. Using classical pricing

techniques, we are able to derive an arbitrage-free discount rate. In the case of buffering of portfolio

shocks, the discount rate is larger the further into the future an annuity payout occurs. Indeed, the

later an annuity payout occurs, the larger the impact of a current portfolio shock on an annuity

payout, and hence the larger the discount rate should be. The discount rate depends not only on the

degree of buffering but also on the stock return distribution. In particular, the higher the degree of

tail risk in stock returns, the larger the discount rate will be.

We determine the underlying investment strategy by extending the principle of delta hedging –

which is familiar from the Black and Scholes model – to our generic stock return model. We find

that in the case of buffering of portfolio shocks, the share of the investment portfolio invested in the

risky stock decreases over the course of a policyholder’s life. Indeed, portfolio shocks are spread out

over a smaller number of years as a policyholder grows older. Hence, to be able to provide a stable

payout stream at higher ages, insurers must take less investment risk as a policyholder ages. Because

our financial market is incomplete, insurers incur a hedging error. We show that for our choice of the

stochastic discount factor, the hedging error is relatively small. Furthermore, a small hedging error is

already achieved when the insurer rebalances the investment portfolio only once a month.6 A hedging

error introduces the possibility of a shortfall: a situation in which the hedging portfolio is insufficient

to cover future annuity payouts. To reduce shortfall risk, insures can ask an annuity price such that,

with large probability, the charged annuity price is sufficient to meet future annuity payouts. We show

that the charged annuity price consists of two components; the first component is equal to the initial

value of the hedging portfolio and the second component represents a capital buffer which covers the

unhedgeable part of the annuity payouts.

6In particular, for a realistically calibrated stock return model, we find that the hedging error is smaller than 5% in
99.998% of all scenarios.
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1 A Generic Stock Return Model

1.1 Return Dynamics

We consider a financial market consisting of a risky stock and a risk-free account paying the risk-

free interest rate. Insurers adjust annuity payouts at the equidistant time points tj with time step size

∆t > 0. Hence, tj = j∆t for j = 0, 1, . . . , J . Furthermore, we set t0 = 0 and tJ = T . We define all

random variables and stochastic processes on a common filtered probability space
(
Ω,F ,

{
Ftj
}
,P
)

satisfying the usual conditions. Let
{
Stj | j = 0, 1, . . . , J

}
denote the stock price process. For any

j ∈ {1, 2, . . . , J}, we model log stock returns as follows:

log

[
Stj
Stj−1

]
= µtj∆t+ σtj

√
∆tAj, (1)

where A1, A2, . . . , AJ are (possibly correlated) random variables with mean zero and variance one;

that is, for any j ∈ {1, 2, . . . , J},

E [Aj] = 0, and Var [Aj] = 1. (2)

The (annualized) mean rate of return process
{
µtj | j = 1, 2, . . . , J

}
and the (annualized) volatility

process
{
σtj | j = 1, 2, . . . , J

}
are Ftj−1

-progressively measurable and satisfy, respectively,∑J
j=1

∣∣µtj ∣∣ <∞ and
∑J

j=1 σ
2
tj
<∞.

Our stock return model (1) generalizes the much celebrated Black and Scholes model in which

each Aj is assumed Gaussian.7 Indeed, insurers now have a wide range of stock return specifications

at their disposal. In particular, our framework allows to model Aj as a Variance Gamma or Meixner

distribution. These distributions model stock returns more accurately than a Gaussian distribution;

see, e.g., Merton (1976), Bakshi et al. (1997), Madan et al. (1998), Cont (2001), Schoutens (2003),

and Huang and Wu (2004). The generality of our stock return model enables an insurer to incorporate

stylized facts of stock returns, such as asymmetry and heavy-tailedness, into his risk management

framework and to explore how sensitive the annuity price and the hedging performance are to a

misspecification in the underlying stock return distribution; see Sections 3 and 5 for more details.

7The Black and Scholes model also assumes that the expected log stock return µtj and the stock return volatility σtj
do not depend on time. Furthermore, it assumes that A1, A2, . . . , AJ are independent.
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1.2 Estimating the Stock Return Process

To illustrate our main results, we estimate the stock return process (1). For the sake of convenience,

our illustrations assume that the stock return density is stationary. That is, the expected log stock

return µtj and the stock return volatility σtj are time-independent (i.e., µtj = µ and σtj = σ for all j)

and, furthermore, A1, A2, . . . , AJ are independent and identically distributed.

We consider a dataset consisting of weekly closing prices of the S&P 500 index from January 3,

2000 until March 16, 2018. Before we calibrate the empirical stock return density, we first standardize

the log stock returns. That is, we subtract the (weekly) expected log stock return from the realized log

stock returns and then divide by the (weekly) stock return volatility. We find that the annual expected

log stock return µ and the annual stock return volatility σ are, respectively, given by

µ = 6.52%, and σ = 16.38%. (3)

The solid line in Figure 1 shows the empirical probability density function (PDF) of the standardized

log stock returns. Denote by mk the k-th moment of the standardized log stock returns. We find that

m1 = 0, m2 = 1, m3 = −0.0263, and m4 = 5.36. (4)

Because the third empirical moment (i.e., skewness) of the standardized log stock returns is close to

zero (which indicates a symmetric stock return distribution) and the fourth empirical moment (i.e.,

kurtosis) is large (which indicates a stock return distribution with fat tails), we model standardized

log stock returns by a symmetric Variance Gamma (VG) distribution:8

Aj ∼ V G (σV G, νV G, θV G, µV G) , with θV G = −µV G = 0. (5)

We choose the VG parameters such that the stock return distribution is standardized, has zero

skewness and its kurtosis matches the empirical kurtosis m4. We find the following numerical

values:

σV G = 1, νV G = 0.7853, θV G = 0, and µV G = 0. (6)
8Appendix A provides the characteristic function of a VG random variable in closed-form. This appendix also states

how the empirical moments of the standardized log stock returns are related to the VG parameters.
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The dash-dotted line in Figure 1 represents the standard VG density function. For a detailed

discussion on how to build standardized Lévy distributions and how to calibrate the VG distribution

using historical data or option data, we refer to Seneta (2004), Corcuera et al. (2009), and Linders

and Schoutens (2016). The quantile-quantile plots (see Figure 2) show that a standard VG

distribution is better capable of fitting the tail behavior of the standardized log stock returns than a

standard Gaussian distribution.
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Figure 1. Fitting the empirical stock return density. The solid line shows the empirical probability density function
(PDF) of the standardized log stock returns. This empirical PDF is fitted by a standard VG density function (dash-dotted
line) and a standard Gaussian density function (dotted line).
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(a) Standard VG Distribution
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Figure 2. Quantile-quantile plots. This figure illustrates the quantiles of the standardized log stock returns as a
function of the quantiles of the standard VG distribution (panel a), and as a function of the standard Gaussian distribution
(panel b). The figure shows all quantiles between 1% and 99%, with an increment of 1%. We note that the more similar
the theoretical distribution is to the empirical distribution, the better the points will approximate the diagonal line.
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It is tempting to use a Gaussian distribution when pricing and hedging variable annuity products.

However, Figure 1 and 2 show that such an approach can be dangerous for an insurer. Indeed, the

probability of a stock market crash is nearly zero when working with a Gaussian distribution, whereas

this probability is substantially larger under a heavy-tailed distribution. For example, in the Gaussian

case, the probability that the stock price drops by more than 5% in a given day is 0.000221%. Under

the VG distribution, this probability is approximately 100 times bigger.9

In this section, we have calibrated the standard Variance Gamma distribution. However, our

framework is not restricted to the standard Variance Gamma distribution, but also allows for other

distributions as long as the characteristic function is known in closed-form. Table 3 in Appendix A

provides properties of two other distributions that we can use to model the shocks A1, A2, . . . , AJ .

For instance, if we use a standard Normal Inverse Gaussian (NIG) distribution, then the calibrated

parameters will be given by the values as shown in Table 4 (see Appendix A). Appendix A also

provides the calibrated NIG density function and a quantile-quantile plot comparing the quantiles of

the calibrated NIG distribution with the empirical quantiles.

2 A Variable Annuity with Buffering of Portfolio Shocks

2.1 Specification of the Annuity Contract

This section introduces an affordable and adequate variable annuity with a stable payout stream. To

understand the payout structure of this annuity, we first recall the payout structure of a unit-linked

insurance contract.10 Such a contract provides a more adequate payout stream (i.e., higher expected

retirement income) than an equally priced fixed nominal annuity. Indeed, in the case of a unit-linked

insurance contract, the insurer partly invests the collected annuity premium in the stock market. The

flip side of a unit-linked insurance contract is, however, that its payout can fluctuate heavily from year

to year.

Denote by log ĉtj the log payout from a unit-linked insurance contract at time tj (in what follows,

we use the symbol “̂” to represent a unit-linked insurance contract). The log payout from a unit-

9We note that during the period January 1, 2000 to December 31, 2017, the S&P 500 index exhibited 14 days (out of
4526 trading days) with losses exceeding 5% and 12 days with gains exceeding 5%. Based on these numbers, we find that
the probability of a decrease in the S&P 500 index by more than 5% equals 14/4526 = 0.31%.

10Our aim is to extend a unit-linked insurance contract. However, many variable annuities are sold with riders. In future
work, we intend to investigate how to add guarantees to our contract and how to determine the pricing and hedging of the
new contract.
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linked insurance contract evolves as follows (see, e.g., Maurer et al. (2013b)):

log ĉtj = log ĉtj−1
+ ĝj∆t+ βjσtj

√
∆tAj, (7)

where the parameter ĝj is Ftj−1
-progressively measurable and models the expected change in the

log payout log ĉtj−1
and the parameter βj is Ftj−1

-progressively measurable and models how the log

payout log ĉtj−1
responds to the (unexpected) stock return shock σtj

√
∆tAj . If βj = 0 for every j,

payouts are insensitive to (unexpected) stock return shocks, while if βj = 1 for every j, the investment

portfolio backing the contract is a pure stock portfolio. We can show that the parameter βj is equal to

the share of the investment portfolio invested in the risky stock (see (33) in Section 3.2.2).11 In what

follows, we call βjσtj
√

∆tAj the portfolio shock between time tj−1 and time tj . We can express the

log payout log ĉtj in terms of past portfolio shocks as follows:

log ĉtj = log ĉ0 + (ĝ1 + . . .+ ĝj) ∆t+ β1σt1
√

∆tA1 + . . .+ βjσtj
√

∆tAj. (8)

It follows from (8) that a current portfolio shock has the same impact on payouts that occur in the

near future as on payouts that occur in the distant future. The time distance between the payout date

and the date at which the portfolio shock occurs plays no role.

Our aim is to generalize the payout structure (8) such that we can differentiate between the

volatility of short-term and long-term annuity payouts. More specifically, we allow a current

portfolio shock to have a (much) smaller impact on annuity payouts that occur in the near future than

on annuity payouts that occur in the far future. By generalizing (8), insurers are able to offer an

adequate variable annuity with a stable payout stream which is not more expensive than a unit-linked

insurance contract. In the following definition, we introduce a class of variable annuities that

satisfies this property.

Definition 1. Denote by log ctj the log annuity payout at time tj from an annuity with buffering of

portfolio shocks. The log annuity payout log ctj is defined as follows:

log ctj = log c0 + (g1 + . . .+ gj) ∆t+ qjβ1σt1
√

∆tA1 + . . .+ q1βjσtj
√

∆tAj, (9)

11We note that the expected change in the log payout from a unit-linked insurance contract, i.e., ĝj , equals the difference
between the expected investment return and the so-called Assumed Interest Rate (AIR); see, e.g., Maurer et al. (2013b).
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where the parameter gj is Ftj−1
-progressively measurable and models the expected change in the log

annuity payout log ctj−1
and qj measures the impact of the portfolio shock β1σt1

√
∆tA1 on the log

annuity payout log ctj .

We call the function qj the buffering function which is exogenously specified. An insurance

company may specify qj such that it is consistent with its clients’ preferences. The buffering function

determines how future log annuity payouts respond to portfolio shocks. More specifically, qj models

the exposure of the log annuity payout log ctk+j
to the portfolio shock βk+1σtk+1

√
∆tAk+1 (k ≥ 0).12

If the buffering function equals the identity function (i.e., qj = 1 for all j) and the expected change

in the log payout is the same as the expected change in the log payout from a unit-linked insurance

contract (i.e., gj = ĝj for all j), then the payout structure (9) reduces to the payout structure of a

unit-linked insurance contract (see (8)). In what follows, we assume that the buffering function qj

(weakly) increases with the time distance between the payout date (i.e., tk+j) and the date at which

the portfolio shock occurs (i.e., tk+1), so that a current portfolio shock has a (much) smaller impact

on annuity payouts that occur in the near future than on annuity payouts that occur in the far future.

We refer to buffering of portfolio shocks when the buffering function qj strictly increases with the

investment horizon j.

Figure 3(a) illustrates various specifications of the buffering function qj . The specifications are

such that the corresponding (arbitrage-free) annuity prices are all the same, as well as the expected

payout streams.13 The solid line corresponds to the case of exponential buffering. That is,

qj = a1 − a2 exp {−η · j∆t} , (10)

where a1 and a2 are scaling parameters and η models the degree of buffering. If η ⇒ 0, buffering of

portfolio shocks is maximal, while if η ⇒ ∞, buffering of portfolio shocks is absent. Exponential

buffering is consistent with preference models based on internal habit formation and loss aversion

in which individuals are reluctant to change current consumption following an income shock; see

Section 4 for more details.14 The dash-dotted line shows the case in which qj = a3/N · j∆t for

j∆t < N and qj = a3 for j∆t ≥ N . Here, a3 is a scaling parameter and N denotes the buffering

12We note that the parameter βj is no longer equal to the share of the investment portfolio invested in the risky stock;
see (33) in Section 3.2.2.

13To compute the annuity prices and the expected payout streams, we assume the same setting as in Section 2.2.1.
14See also Fuhrer (2000), Pagel (2017), Van Bilsen et al. (2017), and Van Bilsen et al. (2018).
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period (i.e., the number of years it takes to fully translate a portfolio shock into the annuity payout).

Hence, the risk exposure of a payout that occurs one period from now is only 1/N th of the risk

exposure of a payout that occurs N periods from now.15 The dashed line illustrates the benchmark

case in which insurers do not apply buffering of portfolio shocks at all (i.e., qj = 1 for all j). This

buffering rule is consistent with standard consumption and investment theory; see the seminal work

of Merton (1969).
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(b) Volatility Function

Figure 3. Buffering and volatility functions. This figure illustrates various specifications of the buffering function
qj and the volatility function Σj

tk
. The solid lines represent the case of exponential buffering; that is, qj = a1 −

a2 exp {−η · j∆t} (with a1 = a2 = 1.6084 and η = 0.2). The dash-dotted lines correspond to the case in which
qj = a3/N · j∆t for j∆t < N and qj = a3 for j∆t ≥ N (with a3 = 1.7605 and N = 10). The dashed lines illustrate
the standard case in which qj = 1 for all j. The specifications are such that the corresponding annuity prices are all the
same, as well as the expected payout streams. To compute the annuity prices and the expected payout streams, we assume
the same setting as in Section 2.2.1. The stock return volatility σtj is set equal to 16.38% for each j, the parameter βj to
50% for each j, and the time step ∆t to unity.

The main novelty of the payout structure (9) is the buffering function qj . Our approach allows

insurers to actively control the volatility structure of their annuity payouts. Denote by Σ̂j
tk

and Σj
tk

the

annualized volatility at time tk of log ĉtk+j
and log ctk+j

, respectively. That is,

Σ̂j
tk

=

√
Var
[
log ĉtk+j

| Ftk
]
, (11)

Σj
tk

=

√
Var
[
log ctk+j

| Ftk
]
. (12)

Insurers can specify the function qj such that the annualized volatility of log ctk+j
is relatively low for

15This buffering rule is consistent with the new Dutch legislation on Defined Contribution contracts; see Section 2.3
for further details.
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small horizons (i.e., small j) and relatively high for large horizons (i.e, large j):

Σj
tk
< Σ̂j

tk
for small j, and Σj

tk
≥ Σ̂j

tk
for large j. (13)

Figure 3(b) shows the annualized volatility Σj
tk

as a function of the time distance between the payout

date and the current time for various specifications of the buffering function qj . The underlying

annuity contracts all cost the same, and all provide the same expected payout stream. However, the

solid and dash-dotted line correspond to annuity contracts that generate a (much) more stable payout

stream than a unit-linked insurance contract. Indeed, the short-term annuity payouts of these contracts

exhibit a relatively low annualized volatility. We note that individuals can also realize a stable payout

stream by buying a fixed nominal annuity. The flip side of such an annuity is, however, that it does

not provide an adequate payout stream at an affordable price, especially when interest rates are low.

Guillén et al. (2006) and Maurer et al. (2016) also consider a variable annuity product whose year-

on-year volatility is lower than the year-on-year volatility of the underlying investment portfolio (i.e.,

the payout stream is excessively smooth).16 These authors achieve this low year-on-year volatility in

current payouts as follows. If the investment portfolio increases in value, then only a fraction of the

investment return will be added to the annuity payout. The remainder of the investment return will be

retained by the insurer. Conversely, if the investment portfolio decreases in value, then the negative

investment return will not be entirely reflected in the annuity payout. The additional payout will be

supplemented from the reserve. A major difference between their framework and our framework is

that the consumption stream of our individual is excessively sensitive: current realized returns have

strong predictive power for future payouts. Also, our annuity contracts determine the investment

portfolio endogenously from the desired payout stream, while existing annuity contracts assume that

the investment portfolio is exogenously given.

2.2 Payout Dynamics

2.2.1 Shock Absorbing Mechanism. This section illustrates the impact of portfolio shocks on

current and future payouts. We consider two products: a unit-linked insurance contract and an annuity

featuring buffering of portfolio shocks. Both products have a (fixed) term of 20 years and an initial

payout of 100. We choose the (unconditional) expected growth rates ĝj and gj such that, given the

16See also Jørgensen and Linnemann (2011), Guillén et al. (2013), and Linnemann et al. (2014).
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information available at time 0, expected future payouts are equal to 100. We note that, based on a

risk-free interest rate of 1.5%,17 a fixed nominal annuity only provides a payout of 76.13, which is

clearly inadequate.18 In the case of buffering of portfolio shocks, we assume that the insurer applies

exponential buffering (see (10)). We choose the scaling parameter a1 = a2 such that the prices of the

two products are the same; see Section 3.2.1 on how to compute the price of a variable annuity with

buffering of portfolio shocks. Log stock returns are distributed according to a VG distribution; see

Section 1.2 for the parameter values of the VG distribution. Finally, we set the risk-free interest rate

to 1.5%, βj to 50% for each j, and the time step ∆t to unity (i.e., payouts occur yearly).

Figures 4(a) and (b) illustrate the impact of a 40% stock price decline in year one on current

and future payouts. In the case of a unit-linked insurance contract, insurers fully translate portfolio

shocks into current payouts. Hence, after the stock return shock has occurred, the payout from the

unit-linked insurance contract drops to ĉt1 = ĉ0 exp {ĝ1 − β1 · 40%} = 81.60. Because the current

payout completely absorbs the portfolio shock, the shape of the expected payout stream remains the

same; see Figure 4(a). In the case of buffering of portfolio shocks, insurers do not fully translate a

portfolio shock into current payouts. As a result, the current payout from the annuity with buffering of

portfolio shocks exceeds the current payout from the unit-linked insurance contract. In this example,

ct1 = c0 exp {g1 − q1 · β1 · 40%} = 94.31 > ĉt1 = 81.60. The consequence of protecting current

payouts is that the shape of the expected payout stream cannot remain the same. More specifically, it

becomes a decreasing function of time. Indeed, future payouts bear a large part of a current portfolio

shock.

Figures 4(c) and (d) show the impact of a 20% stock price increase in year two (next to the

−40% stock return shock in year one) on current and future payouts. As in Figure 4(a), the current

payout from the unit-linked insurance contract directly absorbs the portfolio shock. That is, ĉt2 =

ĉt1 exp {ĝ2 + β2 · 20%} = 89.88; see also Figure 4(c). The impact of the portfolio shock on the

current payout from the annuity with buffering of portfolio shocks is much smaller because q1 = 29%

(i.e., only 29% of the current portfolio shock affects the current annuity payout). Individuals even

receive less than last year, because the insurer also translates q2 − q1 = 24% of last year’s (negative)

portfolio shock into the current annuity payout. Furthermore, as a result of the current stock price

increase, the expected payout stream becomes less downward sloping as compared to Figure 4(b).

17The federal funds rate, which is the most important interest rate in the US, currently (i.e., March 2018) equals 1.5%.
18Here, we assume that an expected annuity payout of 100 would be adequate.
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Figures 4(e) and (f) illustrate a sample path of ĉtj and ctj , respectively. In the case of a unit-

linked insurance contract, the payout stream behaves like a random walk process. In contrast, in the

case buffering of portfolio shocks, the payout stream is excessively smooth and excessively sensitive:

current annuity payouts under-respond to portfolio shocks and current portfolio shocks have predictive

power for future annuity payouts.

2.2.2 Decomposition of Expected Annuity Payouts. In the case of buffering of portfolio shocks,

the shape of the expected payout stream cannot remain the same following a stock return shock; see

Figure 4. Appendix C shows that the expected value of the annuity payout ctj+h (conditional on the

information available at time tj) is given by

Etj
[
ctj+h

]
= ctj × F h

tj

× Etj

[
exp

{
h∑
k=1

gj+k∆t+
h∑
k=1

qkβj+h+1−kσtj+h+1−k

√
∆tAj+h+1−k

}]
,

(14)

where Etj [·] denotes the expectation conditional on information available at time tj and F h
tj

represents

the buffering factor which is defined as follows:

F h
tj

= exp

{
j∑

k=1

(qj+h−k+1 − qj−k+1) βkσtk
√

∆tAk

}
. (15)

In the case of a unit-linked insurance contract, the buffering factor F h
tj

is equal to unity (i.e., past

portfolio shocks do not affect the expected payout stream). Indeed, in the absence of buffering of

portfolio shocks, past portfolio shocks are already fully reflected into current payouts. The buffering

factor F h
tj

is thus the direct consequence of the gradual adjustment of annuity payouts to portfolio

shocks. Intuitively, gradual adjustment of annuity payouts gives rise to funding imbalances that must

be translated into future annuity payouts. Consequently, future adjustments of annuity payouts

become, to some extent, predictable. The buffering factor F h
tj

summarizes the predictable changes in

future annuity payouts as a result of past portfolio shocks that have not been reflected into current

annuity payouts yet. Indeed, q(j+h−k)+1 is the desired risk exposure of the future annuity payout ctj+h

to the past portfolio shock βkσtk
√

∆tAk. Because q(j−k)+1βkσtk
√

∆tAk has already been reflected

into the current annuity payout ctj , q(j+h−k)+1 − q(j−k)+1 represents the remaining part of the past

portfolio shock βkσtk
√

∆tAk that the insurer still needs to translate into the current annuity payout.
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Stock Return Shock: −40% in Year 1
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(b) Buffering of Portfolio Shocks

Stock Return Shock: +20% in Year 2 (next to the −40% Stock Return Shock in Year 1)
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(c) Unit-linked Insurance Contract
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(d) Buffering of Portfolio Shocks
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(e) Unit-linked Insurance Contract
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(f) Buffering of Portfolio Shocks

Figure 4. Shock absorbing mechanisms. The figure shows the impact of stock return shocks on current and future
payouts. The left panels assume a unit-linked insurance contract, while the right panels assume buffering of portfolio
shocks. We choose the (unconditional) expected growth rates ĝj and gj such that, given the information available at
time 0, expected future payouts are equal to 100. Log stock returns are distributed according to a VG distribution; see
Section 1.2 for the parameter values of the VG distribution. We assume the exponential buffering function (10), with
a1 = a2 = 1.6084 and η = 0.2. The risk-free interest rate is set equal to 1.5%, the parameter βj to 50% for each j, and
the time step ∆t to unity.



To compute the change in the expected annuity payout, insurers need to determine the change in

the current annuity payout ctj as well as the change in the buffering factor F h
tj

. The current annuity

payout evolves as follows (see Appendix C):19

∆ log ctj = log ctj+1
− log ctj = gj+1∆t+ q1βj+1σtj+1

√
∆tAj+1 + logF 1

tj
. (17)

The second term on the right-hand side of the second equality in (17) represents the impact of the

current portfolio shock on the current annuity payout. Because q1 is relatively small in the case of

buffering of portfolio shocks, the year-on-year volatility of the annuity payout is low, implying an

excessively smooth payout stream. The last term reflects the impact of past portfolio shocks on the

current annuity payout. Since not only the current portfolio shock but also past portfolio shocks affect

the change in the current annuity payout, the payout process is excessively sensitive.

The log buffering factor logF h
tj

satisfies (see Appendix C):

∆ logF h
tj

= logF h−1
tj+1
− logF h

tj
= qhβj+1σtj+1

√
∆tAj+1 − logF 1

tj
− q1βj+1σtj+1

√
∆tAj+1. (18)

The first term on the right-hand side of the second equality in (18) denotes the current portfolio shock

that results in a new buffering factor. The last two terms represent portfolio shocks that are being

translated into the current annuity payout, so that they are no longer included in the buffering factor.

2.3 Dutch Defined Contribution Contracts

In Dutch Defined Contribution (DC) contracts, a person puts money in an individual investment

account and invests the money in the financial market. As of September 2016, individuals are no

longer required to convert their total accumulated retirement wealth into a guaranteed lifelong

nominal income stream, but may choose to take investment risk during retirement. To prevent large

year-on-year fluctuations in pension payouts, the legislation allows stock return shocks to be

buffered (with a maximum buffering period of 10 years). Currently, insurance companies in the
19If gj , βj and σtj are constant (i.e., gj = g, βj = β and σtj = σ for all j) and, furthermore, A1, A2, . . . , AJ

are independent and identically distributed, then we can write the dynamics of the current annuity payout (17) as an
ARMA(1,∞) process. More specifically,

∆ log ctj = g∆t+ εj+1 +

∞∑
k=1

θkεj+1−k, (16)

where θk = qk+1−qk
q1

and
{
εj = q1βσ

√
∆tAj | j = 1, 2, . . . , J

}
is a white noise process (ε0 = ε−1 = . . . = 0 by

convention).
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Netherlands are investigating whether or not they should offer products featuring buffering of

portfolio shocks. Our framework may enable insurers to incorporate buffering of portfolio shocks

into variable annuity contracts.

3 Risk Management Framework

Whereas Section 2 took the perspective of the policyholder, this section takes the perspective of the

insurer. More specifically, we consider the question: how much money should the insurer ask for an

annuity with buffering of portfolio shocks? We show that the price consists of two components. The

first component covers the hedgeable part of the contract and follows from arbitrage-free valuation

of the future payouts; see Section 3.2. The second component covers the non-hedgeable part of the

contract and follows from applying a risk-measure (e.g., Value-at-Risk) to the hedging error (i.e., the

difference between the payout and the value of the investment portfolio); see Section 3.3.

Pricing of cash flows typically requires simulation-based techniques. This section, however,

provides closed-form expressions for the annuity price and the hedging strategy. To derive the

pricing kernel, we assume that stock returns satisfy:

log

[
Stj
Stj−1

]
=
(
rtj + e

)
∆t+ σtj

√
∆tAj, (19)

where e ≥ 0 denotes the expected excess log stock return20 and rtj represents the risk-free interest

rate which is assumed to be Ftj−1
-measurable.21 We assume that A1, A2, . . . , AJ are independent

and identically distributed. Additionally, the shock process {Aj | j = 1, 2, . . . , J}, the interest rate

process
{
rtj | j = 1, 2, . . . , J

}
and the volatility process

{
σtj | j = 1, 2, . . . , J

}
are assumed to be

independent. Furthermore, the characteristic function of the standardized stock return Aj , which is

defined as follows:

φ(v) = E
[
eivAj

]
, (20)

is given in an analytical form. Here, i =
√
−1 is the imaginary unit. The cumulative distribution

function (CDF) of Aj , however, might be unknown or too cumbersome to work with; see Le Courtois

and Walter (2014) how to numerically back out the CDF from its characteristic function.

20Appendix B provides a few properties of the expected excess stock return e.
21We also assume that rtj satisfies:

∑J
j=1

∣∣rtj ∣∣ < ∞. Furthermore, we note that without loss of generality, we could
also assume that rtj is Ftj -measurable. But economically it makes more sense to assume that rtj is known at time tj−1.
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3.1 Pricing of Cash Flows

We assume an arbitrage-free financial market. The fundamental theorem of asset pricing proves the

existence of a probability measure Q, which we call the risk-neutral pricing measure, equivalent to

the real-world probability measure P such that the arbitrage-free price at time tj of a contingent claim

paying off XT at time T is exactly equal to the discounted expectation of XT under this probability

measure:

Time-tj price = EQ

[
e−
∑J
k=j+1 rtk∆tXT

∣∣∣Ftj] . (21)

We assume that the contingent claimXT is FT -measurable; that is, the only randomness inXT comes

from the stock price. Since the financial market is incomplete, infinitely many pricing measures Q

exist.22 Denote by P the set of probability measures equivalent to P. Although interest rates and

volatilities are described by random processes, we do not assume interest rate and volatility derivatives

are available in our market. Under this assumption, we can define the set Q of feasible risk-neutral

pricing measures as follows:

Q =
{
Q ∈ P | EQ

[
e−rtj+1∆tStj+1

∣∣∣Ftj] = Stj for j = 0, 1, . . . , J − 1
}
. (22)

We search for a pricing measure Q ∈ Q to value cash flows. Brody et al. (2012) also consider the idea

of finding a pricing measure for general Lévy processes. The following theorem provides a natural

choice for a Q-measure. This measure has a similar structure as the Q-measure implied by the Black

and Scholes financial market. Furthermore, in Section 3.2.3, we show that our annuity contracts can

be hedged almost perfectly with existing assets. Hence, a different choice for the risk-neutral measure

will have a small impact on the annuity price.

Theorem 1. The probability measure Q with Radon-Nikodym derivative given by

ξtj = exp

{
−

j∑
k=1

ψ(−λtk)∆t−
√

∆t

j∑
k=1

λtkAk

}
, (23)

is an arbitrage-free pricing measure; that is, Q ∈ Q. For each k ∈ {1, . . . , j}, the market price of

22A perfect hedging strategy does typically not exist when stock prices have jumps.
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risk parameter λtk > 0 satisfies the following equation:

e = ψ(−λtk)− ψ(σtk − λtk), (24)

where

ψ(−z) =
1

∆t
log φ

(
iz
√

∆t
)
. (25)

We note that the market price of risk λtk has a similar interpretation as the Sharpe ratio in the

Black and Scholes model; see also Brody et al. (2012) for a discussion on risk premiums in a Lévy

setting. We can now define the stochastic discount factor (SDF) at time tj as follows:

Mtj = e−
∑j
k=1 rtk∆tξtj . (26)

Using the SDF (26), we can transform a Q-expectation (see (21)) into a P-expectation in the following

way:

Time-tj price = EQ

[
e−
∑J
k=j+1 rtk∆tXT

∣∣∣Ftj] = EP

[
MT

Mtj

XT

∣∣∣∣ Ftj] . (27)

Section 3.2 uses (27) to price a variable annuity with buffering of portfolio shocks. In what follows,

all expectations are expectations under the real-world probability measure P. Furthermore, we denote

the conditional expectation EP
[
·
∣∣Ftj] by Etj [·].

3.2 Valuation of the Hedgeable Part

Insurers can diversify the risks associated with traditional insurance contracts by pooling a large

number of independent policies. They can then use premium principles to value such contracts; see,

e.g., Goovaerts et al. (2010). Insurers who offer variable annuity products are exposed to a high

degree of systematic equity risk; this risk is non-diversifiable and a premium principle cannot cope

with the equity risk associated with a variable annuity contract (see, e.g., Feng and Shimizu (2016)).

Therefore, hedging must be an integral part of the risk management of variable annuity contracts.23

This section proposes an approximate dynamic hedging strategy consisting of risky stocks and

the risk-free account to manage the systemic equity risk associated with a variable annuity with

buffering of portfolio shocks. Section 3.2.1 determines the initial value of the hedging portfolio,

23We note that there is evidence that some insurers have difficulties managing their variable annuity products; see
Koijen and Yogo (2018).
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whereas Section 3.2.2 explicitly states how much wealth the insurer should invest in the risky stock

at each moment in time during the lifetime of the contract.24 Finally, Section 3.2.3 evaluates the

hedging performance.

We assume from here on that the expected growth rate gj and the interest rate rtj are deterministic

functions of time.25 In addition, we assume that βj and σtj are constant (i.e., βj = β and σtj = σ

for every j). In this case, our model is a direct generalization of the Black and Scholes model. In

a 2005 report, one of the models recommended by the American Actuarial Society for pricing and

hedging equity-linked annuities is the Black and Scholes model, because it is simple, tractable and

easy to calibrate; see Gorski and Brown (2005). We show that our model allows more flexibility to

model the stock return distribution while still maintaining the strong points of the Black and Scholes

model: simplicity, tractability and easy calibration. Indeed, we can derive intuitive analytical pricing

formulas and show how to set up a delta-hedging strategy for managing stock price risk. Note also

that similar models have successfully been applied to determine basket option prices (Linders and

Schoutens (2016)), CDO prices (Albrecher et al. (2007)) and implied volatility smiles (Corcuera et al.

(2009)).

3.2.1 Initial Price. We first determine an arbitrage-free price for a variable annuity with buffering

of portfolio shocks. At time 0, this price corresponds to the initial price of a dynamic trading strategy

which (approximately) replicates the payouts of the contract. Denote by V h
tj

an arbitrage-free price at

time tj of the future annuity payout ctj+h . Using formula (27), we express the price V h
tj

as follows:26

V h
tj

= Etj
[
Mtj+h

Mtj

ctj+h

]
. (28)

24For an introduction to the valuation of contingent claims consisting of actuarial (diversifiable) and financial (non-
diversifiable) risks, we refer to Tsanakas et al. (2013), Stadje and Pelsser (2014), Pelsser and Salahnejhad (2016), and
Dhaene et al. (2017).

25If gj and rtj depend on past stock return shocks, then we are typically still able to derive closed-form expressions for
the annuity price and the hedging strategy. Incorporating a stochastic interest rate and a stochastic volatility will require
us to determine adequate stochastic processes for these variables as well as a realistic dependence model describing the
interactions between the different processes. Moreover, additional derivative instruments have to be added to the financial
market in order to be able to hedge the annuity contract.

26Throughout, we abstract away from longevity risk. We note that if survival rates do not depend on stock returns, (28)
can be easily extended and becomes:

V h
tj = hpxEtj

[
Mtj+h

Mtj

ctj+h

]
,

where hpx denotes the probability than an individual aged x at time tj will survive h periods.
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Here, Mtj denotes the stochastic discount factor defined in (26). The annuity at time tj is a collection

of payouts due at future dates tj+h (h = 0, 1, . . . , J − j). The arbitrage-free annuity price at time tj ,

i.e., Vtj , is then defined as follows:

Vtj =

J−j∑
h=0

V h
tj
. (29)

The following theorem provides an explicit expression for V h
tj

.

Theorem 2. Denote by F h
tj

the buffering factor (see (15)). An arbitrage-free price V h
tj

at time tj of

the future annuity payout ctj+h is now given by

V h
tj

= ctj × F h
tj
× Ahtj , (30)

where

Ahtj = exp

{
−∆t

h∑
k=1

dtj(k)

}
, (31)

and

dtj(k) = rtj+k − gj+k + ψ (−λ)− ψ (qkβσ − λ) . (32)

The arbitrage-free annuity price (30) consists of three factors: the current annuity payout ctj , the

buffering factor F h
tj

and the annuity factor Ahtj . Equation (30) shows that V h
tj

is an increasing function

of the buffering factor F h
tj

. Indeed, a positive past portfolio shock increases the expected growth rate

of future annuity payouts, thereby increasing the costs of future annuity payouts. The annuity factor

Ahtj captures the future portfolio shocks. This factor depends on the so-called forward discount rate

dtj(k) (see equation (32)) which takes into account the impact of the uncertain portfolio return in the

time interval [tj+k−1, tj+k] on the future annuity payout ctj+h .

Figure 5 shows the forward discount rate (32) as a function of the time distance between the payout

date and the current time. The risk-free interest rate is set equal to 1.5%. In the case of a fixed nominal

annuity, dtj(k) reduces to the risk-free interest rate rtj = 1.5%. As a result, a fixed nominal annuity

cannot provide an adequate payout stream at an affordable price in a low interest rate environment

(i.e., when rtj is relatively low). In the case of a variable annuity, future payouts are exposed to (non-

diversifiable) portfolio shocks. As a consequence, the discount rate is substantially larger than the

risk-free interest rate. In the case of buffering of portfolio shocks, the discount rate increases with the
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horizon; the further into the future an annuity payout occurs, the larger the exposure of the annuity

payout to a current portfolio shock, and hence the higher the discount rate will be. Figure 5 also shows

that the discount rate depends on the stock return distribution. In particular, to compensate for the

additional tail risk in stock returns, a VG distribution produces a higher discount rate than a Gaussian

distribution.
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Figure 5. Term structure of forward discount rates. The figure illustrates the forward discount rate as a function of
the time distance between the payout date and the current time. The solid line and the dash-dotted line show the case of
a unit-linked insurance contract, while the dashed line and the dotted line show the case of buffering of portfolio shocks.
We set the parameters ĝj and gj to zero. Log stock returns are distributed according to either a Gaussian distribution (solid
line and dashed line) or a VG distribution (dash-dotted line and dotted line); see Section 1.2 for the parameter values of
the VG distribution. We assume the exponential buffering function (10), with a1 = a2 = 1.6084 and η = 0.2. The
risk-free interest rate rtj is set equal to 1.5%, the parameter β to 50%, and the time step ∆t to unity.

3.2.2 Dynamic Trading Strategy. We consider a dynamic trading strategy consisting of risky

stocks and the risk-free account. Theorem 3 below specifies the share of the investment portfolio

invested in the risky stock at time tj .

Theorem 3. Consider a variable annuity with buffering of portfolio shocks. Let αtj be the share of

the investment portfolio invested in the risky stock at time tj . Suppose that αtj is given by

αtj = β

J−j∑
h=1

V h
tj

Vtj − ctj
qh. (33)

Here, Vtj =
∑J−j

h=0 V
h
tj

and V h
tj

is given by Theorem 2.
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Then this trading strategy approximately replicates the annuity payouts of the contract, i.e.,

Wtj ≈ Vtj , for any j = 0, 1, . . . , J, (34)

whereWtj denotes the value of the underlying investment portfolio at time tj . We note that the trading

strategy exactly replicates the annuity payouts if A1, . . . , AJ are normally distributed and ∆t→ 0.

Figure 6 illustrates the share of the investment portfolio invested in the risky stock as a function of

time tj . We assume the exponential buffering function (10). As shown by this figure, the insurer takes

less investment risk as a policyholder becomes older. Intuitively, as time proceeds, portfolio shocks

are spread out over a smaller number of years. Hence, to be able to provide a stable payout stream at

higher ages, the insurer reduces the share of wealth invested in the risky stock over the course of the

contract.
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Figure 6. Dynamic trading strategy. The solid line illustrates the expected share of the investment portfolio invested
in the risky stock as a function of the time point tj . The dashed line and dash-dotted line correspond to the 20% and
80% quantile of the portfolio share, respectively. The dotted line shows the portfolio share associated with a unit-linked
insurance contract. We choose the parameters ĝj and gj such that, given the information available at time 0, expected
future payouts are equal to 100. Log stock returns are distributed according to a VG distribution; see Section 1.2 for the
parameter values of the VG distribution. We assume the exponential buffering function (10), with a1 = a2 = 1.6084 and
η = 0.2. The risk-free interest rate rtj is set equal to 1.5% for each j, the parameter β to 50%, and the time step ∆t to
unity.

3.2.3 Hedging Performance. Theorem 3 provides a dynamic hedging strategy that

(approximately) hedges the payouts of a variable annuity with buffering of portfolio shocks. This

section assesses the capability of the investment portfolio to provide an adequate hedge for the future
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annuity payouts. More specifically, we explore how well the dynamic trading strategy is capable of

hedging a single annuity payout cT with T = 20. Consistent with Section 2.2.1, we assume the

exponential buffering function (10) (with a1 = a2 = 1.6048 and η = 0.2) and set the (unconditional)

expected growth rate gj equal to −ψ (qjβσ). Log stock returns are distributed according to a VG

distribution; see Section 1.2 for the parameter values of the VG distribution. Finally, we set the the

risk-free interest rate rtj to 1.5% for every j, the parameter β to 50%, and the time step ∆t to one

month.

The value of the investment portfolio Wtj satisfies the following dynamics (with W0 = V0):

Wtj+1

Wtj

= αtj
Stj+1

Stj
+
(
1− αtj

)
ertj+1∆t. (35)

Here, αtj is the share of the investment portfolio invested in the risky stock which, in this particular

case, equals qJ−jβ; see equation (33). The relative hedging error εT = ε20 is defined as follows:

εT =
WT

cT
− 1. (36)

We use (36) to measure the performance of the dynamic trading strategy αtj . First, we simulate the

stock price process
{
Stj | j = 0, 1, . . . , J

}
. Then, we determine for each simulated sample path of

the stock price, the realizations of the investment portfolio Wtj (see (35)) and the annuity payout ctj

(see (9)). Finally, we determine the relative hedging error εT (see (36)). Figure 7 shows a histogram

of the realizations of the relative hedging error εT .27 According to this histogram, the probability that

the relative hedging error exceeds 5% is 0.0002%. Appendix E evaluates the hedging error associated

with a constant-mix strategy. We observe that our strategy αtj performs very well compared to the

constant-mix strategy.

27Appendix D shows the histogram of the realizations of the relative hedging error εT in case of weekly and yearly
rebalancing, and in case of Gaussian distributed stock returns. This appendix also evaluates the hedging performance in
case of NIG distributed returns.
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Figure 7. Hedging performance. This figure shows the histogram of the realizations of the relative hedging error εT
based on 100k simulated sample paths for the stock price process

{
Stj | j = 0, 1, . . . , J

}
. The relative hedging error εT

measures the performance of the underlying investment portfolio to hedge the single annuity payout cT (with T = 20).
We assume the exponential buffering function (10) (with a1 = a2 = 1.6084 and η = 0.2) and set the (unconditional)
expected growth rate gj equal to−ψ (qjβσ). Log stock returns are distributed according to a VG distribution; see Section
1.2 for the parameter values of the VG distribution. The risk-free interest rate rtj is set equal to 1.5% for each j, the
parameter β to 50%, and the time step ∆t to one month.

3.3 Valuation of the Non-Hedgeable Part

Figure 7 shows that by holding the portfolio Wtj (see Theorem 3), we can adequately hedge the

payout cT . However, cT is not exactly equal to WT . We define the residual loss LT as follows:

LT = cT −WT . (37)

Figure 7 shows that in some scenarios the hedging error εT is smaller than zero, representing a loss

for the insurer (i.e., LT > 0).

We can determine the charged annuity price P0 in two steps; first, we determine an adequate hedge

(see Section 3.2.1), and second, we value the residual loss using a risk measure. This approach was

first proposed in Dhaene et al. (2017) for hybrid claims combining actuarial and financial risks. More

specifically, we define the charged annuity price P0 as follows:

P0 = V0 + C0, (38)

where C0 ≥ 0 denotes a capital buffer which we determine at time 0. The insurer uses the amount
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V0 to buy the hedging portfolio which pays out the amount WT at maturity T . The remainder C0 =

P0 − V0 is put in the risk-free account which pays out C0e
∑J
k=1 rtk∆t at maturity T . We determine

the capital buffer C0 such that the total amount WT + C0e
∑J
k=1 rtk∆t exceeds the liability cT with

probability p. More specifically, C0 solves the following equation:

C0e
∑J
k=1 rtk∆t = inf

{
x0 ∈ R

∣∣∣ P [WT + x0e
∑J
k=1 rtk∆t ≥ cT

]
≥ p
}
, (39)

where p is supposed to be large (values for p usually range from 95% to 99.5%). Our definition of P0

is equivalent to setting the capital buffer C0 equal to the Value-at-Risk (VaR) of the residual loss LT

with confidence level p:28

C0 = e−
∑J
k=1 rtk∆tV aRp[LT ]. (40)

We note that there is no unique annuity price P0, but a whole set of acceptable annuity prices P0.

Figure 8 shows the capital buffer C0 (expressed as a percentage of the initial price V0) as function of

the confidence level p, where we assume the same setting as in Section 3.3.
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Figure 8. Capital buffer. This figure shows the capital buffer C0 (expressed as a percentage of the initial price V0)
as a function of the confidence level p. We determine the capital buffer C0 such that shortfall risk (i.e., LT > 0) is
smaller than 1− p. The annuity contract considers a single annuity payout cT (with T = 20). We assume the exponential
buffering function (10) (with a1 = a2 = 1.6084 and η = 0.2) and set the (unconditional) expected growth rate gj equal
to −ψ (qjβσ). Log stock returns are distributed according to a VG distribution; see Section 1.2 for the parameter values
of the VG distribution. The risk-free interest rate rtj is set equal to 1.5% for each j, the parameter β to 50%, and the time
step ∆t to one month.

28We can also determine C0 using a general risk measure; see, e.g., Artzner et al. (1999) and Dhaene et al. (2003).
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4 Habit Formation and Buffering of Portfolio Shocks

The buffering function can be used to tailor an equity-linked annuity to the risk preferences of a

policyholder, since it allows to differentiate between the short-term and the long-term volatility of the

future annuity payouts; see equation (13). We show in this section that buffering of portfolio shocks

is optimal when the individual derives his utility by comparing current consumption with an internal

habit level. We also specify the buffering function qj such that it is consistent with habit formation

assuming that the financial market can be described as in Sections 3.1 and 3.2.

We consider an individual with an initial budget W0 who wants to purchase an equity-linked

annuity with payout stream given by
{
ctj | j = 0, 1, . . . , J

}
. The market price to purchase this payout

stream is given by
∑J

j=0 E
[
Mtjctj

]
, where the pricing kernel Mtj is given by (26). We assume that

the discounted expected utility U for this individual is given by:29

U =
J∑
j=0

E

[
(1 + δ)−j∆t

1

1− γ

(
ctj
htj

)1−γ
]
, (41)

where the habit level htj satisfies:

log htj − log htj−1
= ϕ log ctj−1

− ϑ log htj−1
. (42)

Here, δ ≥ 0 denotes the subjective rate of time preference, γ ∈ (0,∞)/{1} represents the coefficient

of relative risk aversion, ϑ ≥ 0 models the rate at which the habit level depreciates, and ϕ ≤ ϑ

measures the relative importance between the initial habit level h0 and the individual’s past

consumption choices.

The individual wants to maximize (41) subject to (42) and his dynamic budget constraint. Hence,

29We note that the ratio model of habit formation (41) has been employed by many authors, see, e.g., Fuhrer (2000),
Abel (1990, 1999), Chan and Kogan (2002), Gómez et al. (2009), Smith and Zhang (2007), Carroll et al. (1997), Carroll
et al. (2000), Carroll (2000), and Gomes and Michaelides (2003).

26



the individual faces the following maximization problem:

max
ctj

J∑
j=0

E

[
(1 + δ)−j∆t

1

1− γ

(
ctj
htj

)1−γ
]

s.t.
J∑
j=0

E
[
Mtjctj

]
≤ W0,

log htj − log htj−1
= ϕ log ctj−1

− ϑ log htj−1
.

(43)

Solving this maximization problem analytically is impossible and one has to use numerical

techniques to derive the optimal consumption stream. Here, we follow the ideas proposed in

Van Bilsen et al. (2018) and approximate the budget constraint by using a Taylor series expansion

around the consumption stream
{
ctj
htj

}
= 1. In the following theorem, we show the solution of the

approximate maximization problem. A proof of this result is given in Appendix F.

Theorem 4. Consider the financial market described in Sections 3.1 and 3.2. The optimal

consumption which approximately solves the maximization problem (43) is given by

c∗tj = exp

{
−

j−1∑
k=0

ϕ

γ
(1− (ϑ− ϕ))j−1−k ŷk −

1

γ
ŷj +

λ

γ

√
∆t

j∑
k=1

Aj+1−kqk

}
(44)

for appropriate choices of ŷj . The function qk is given by

qk = 1 +
k−2∑
l=0

ϕ (1− (ϑ− ϕ))l . (45)

Theorem 4 shows that buffering of portfolio shocks is required to maximize an individual’s

expected utility in the presence of a habit level.30 Indeed, the function qk defined in equation (45) is a

buffering function as defined in Section 2. Furthermore, the optimal consumption c∗tj turns out to be

an equity-linked annuity with buffering of portfolio shocks, with appropriately chosen expected

growth rate. Note also that Theorem 4 does not make any assumptions regarding the distribution of

the stock return shocks.

In the special case where ∆t is infinitely small, the individual’s optimal consumption choice

30Note that in case the individual derives utility only from absolute levels of consumption (i.e., htj = 1 for every j),
the optimal payout stream is provided by the unit-linked insurance contract as specified in equation (7).
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features the following buffering function qs−t (see Van Bilsen et al. (2018)):

qs−t =


1 + ϕ

ϑ−ϕ (1− exp {− (ϑ− ϕ) (s− t)}) , if ϑ > ϕ,

1 + ϕ · (s− t), if ϑ = ϕ.

(46)

Here, qs−t denotes the impact of a portfolio shock at time t on a future annuity payout at time s > t.

It follows from (46) that the parameter 0 ≤ ϕ/ϑ ≤ 1, which measures the degree of habit persistence,

models the impact of a current portfolio shock on the future growth rates of consumption.

To illustrate the potential benefits of buffering of portfolio shocks, we consider the following

situation. Suppose an individual is offered two contracts: a unit-linked insurance contract and an

annuity with buffering of portfolio shocks. We assume the same setting as in Section 2.2.1.

Furthermore, we assume ϕ = ϑ. Table 1 reports for various values of the preference parameters

which contract the individual prefers. We observe that for sufficiently high values of ϕ = ϑ and γ,

the individual prefers the contract with buffering of portfolio shocks.

Risk Aversion γ
Parameter ϕ = ϑ 2 3 5 7 10

0 U U U U U
0.2 U U U U U
0.4 U U B B B
0.6 U B B B B
0.8 U B B B B

Table 1. Preferred contract. This table reports for various values of the preference parameters
which contract the individual prefers. The individual has the choice between two contracts: a unit-
linked insurance contract (U) and an annuity with buffering of portfolio shocks (B). We assume the
same setting as in Section 2.2.1. Furthermore, we assume ϕ = ϑ. The individual’s preferences are
described by the ratio model of habit formation (see (41)). We set the initial habit level h0 equal to
the initial annuity payout (i.e., 100) and the subjective rate of time preference δ to 1.5%. We note that
our findings are quite insensitive to a change in δ.

5 Model Robustness

Model robustness refers to the sensitivity of the (arbitrage-free) annuity price V0 to small changes in

the underlying stock return model. When an insurer determines the annuity price, he must specify the

market price of risk parameter λ as well as the standardized stock return distribution; see equation
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(32) in Section 3.2.1.31 However, estimation of these parameters using the available data introduces

estimation errors. Therefore, we have to explore the impact of a misspecification in the market price

of risk parameter and the standardized stock return distribution on the annuity price. Indeed, if an

insurer is aware that a misspecification potentially has significant implications for the annuity price,

then he might want to charge an additional premium to avoid an (unacceptably) high probability of

loss occurrence. A major advantage of our framework is that it encompasses a large variety of stock

return models. Hence, our framework allows us to study the impact of assuming different stock return

models on the annuity price.32

This section considers the same annuity product as described in Section 3.2.3. Furthermore, it

assumes that stock return shocks are distributed according to a VG distribution, with ‘true’ market

price of risk parameter λV G = 0.3874 and ‘true’ shape parameter νV G = 0.7853 (see also Section 1.2

for the parameter values of the VG distribution). The insurer has only partial information about the

‘true’ stock return distribution. It correctly employs a VG distribution, but the ‘true’ parameters λV G

and νV G are unknown. Once these two parameters are estimated, the expected excess rate of return e

follows from (24). The other parameters of the VG distribution (i.e., σV G, θV G and µV G) are assumed

fixed and thus do not have to be estimated. Denote the estimated parameters by λ∗V G and ν∗V G. We

note that the estimated shape parameter ν∗V G unambiguously determines the estimated kurtosis of the

standardized stock return distribution. Indeed, the estimated kurtosis κ∗V G equals 3 + 3 · ν∗V G. In what

follows, we use the estimated kurtosis κ∗V G instead of the estimated shape parameter ν∗V G.

Given the estimated parameters λ∗V G and κ∗V G, we can determine the time-0 (arbitrage-free)

annuity price V0 (λ∗V G, κ
∗
V G); see Theorem 2.33 Because the estimated parameters λ∗V G and κ∗V G can

deviate from their ‘true’ values, the annuity price V0 (λ∗V G, κ
∗
V G) may also differ from its ‘true’ value

V0 (λV G, κV G). We denote this pricing error by ε0 (λ∗V G, κ
∗
V G):

ε0 (λ∗V G, κ
∗
V G) =

V0 (λ∗V G, κ
∗
V G)

V0 (λV G, κV G)
− 1. (47)

Figure 9 illustrates the pricing error (47) as a function of the estimated market price of risk parameter

λ∗V G and the estimated kurtosis κ∗V G. The case κ∗V G = 3 corresponds to a Gaussian distribution,

whereas the case κ∗V G = 5.36 (and λ∗V G = 0.3874) corresponds to the ‘true’ VG distribution. As

31Here, we implicitly assume that the stock return volatility and the interest rate are exogenously given.
32Our framework also allows us to study the impact of a parameter misspecification on the hedging performance.
33Alternatively, we can also use the annuity price defined in (38). However, this will not change our conclusions.
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shown by Figure 9, deviations from the ‘true’ parameters may have a significant impact on the annuity

price. In the following sections, we illustrate how the annuity price varies with the market price of risk

parameter and the kurtosis. For an insurer, it is important to know how sensitive the charged annuity

price is to a misspecification in the underlying stock return model. The richness of our framework

enables insurers to carry out such a sensitivity analysis.

0.38

0

3

0.5

0.382 3.5

1

4
0.384

4.5

1.5

0.386 5

5.5
0.388

6

Figure 9. Sensitivity of the annuity price to estimation errors in λV G and κV G. This figure shows the pricing
error ε0 (λ∗V G, κ

∗
V G) as a function of the estimated market price of risk parameter λ∗V G and the estimated kurtosis κ∗V G.

The figure considers the same annuity product as described in Section 3.2.3. Furthermore, it assumes that stock return
shocks are distributed according to a VG distribution, with ‘true’ market price of risk parameter λV G = 0.3874 and ‘true’
kurtosis κV G = 5.36. The blue line indicates all combinations of (λ∗V G, κ

∗
V G) such that the estimated mean excess stock

return equals the ‘true’ mean excess stock return (i.e., the mean stock return implied by the ‘true’ parameter values λV G

and κV G).

5.1 Wrong Standardized Stock Return Distribution

This section considers the case where the ‘true’ market price of risk parameter λV G is used, but a

wrong standardized stock return distribution is employed. For example, the ‘true’ market price of

risk parameter λV G = 0.3874 may be given exogenously by the regulator. However, the insurer must

estimate the kurtosis of the standardized stock return distribution. The insurer thus uses an estimated

kurtosis which typically differs from the ‘true’ kurtosis when pricing the annuity product.

Figure 9 illustrates that using an estimated kurtosis κ∗V G which is lower than the ‘true’ kurtosis

κV G = 5.36 leads to a higher annuity price (i.e., positive pricing error). The reason for this is that

a reduction in the estimated kurtosis κ∗V G implies a lower estimated mean excess stock return (this

follows from (24), (25) and (48)). This can also be seen from Figure 10 which shows the estimated
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mean stock return as function of the estimated market price of risk parameter λ∗V G and the estimated

kurtosis κ∗V G. Hence, if the insurer employs an estimated kurtosis κ∗V G which is lower than the ‘true’

kurtosis κV G, then the annuity price is based on a estimated mean stock return that is too low.
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Figure 10. Estimated mean stock return as a function of λ∗V G and κ∗V G. This figure shows the estimated mean
stock return as function of the estimated market price of risk parameter λ∗V G and the estimated kurtosis κ∗V G. The figure
assumes that stock return shocks are distributed according to a VG distribution; see Section 1.2 for the parameter values
of the VG distribution. The risk-free interest rate rtj equals 1.5%.

5.2 Wrong Market Price of Risk Parameter

This section considers the case where the ‘true’ standardized stock return distribution is employed,

but a wrong market price of risk parameter is used when pricing the annuity product. We assume

that the ‘true’ kurtosis κV G is known to the insurer. However, instead of using the ‘true’ market price

of risk parameter λV G, the insurer uses, for example, the market price of risk parameter that follows

from the Gaussian distribution (i.e., λ∗V G = 0.3884 > λV G = 0.3874).

As shown by Figure 9, an increase in the estimated market price of risk parameter λ∗V G leads to a

lower annuity price (i.e., negative pricing error). The reason for this that an estimated market price of

risk parameter λ∗V G which is higher than the ‘true’ market price of risk parameter λV G results in an

estimated mean excess stock return that is higher than the ‘true’ mean excess stock return; see also

Figure 10.
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5.3 Joint Impact of Wrong Market Price of Risk and Wrong Kurtosis

The previous sections have showed that pricing errors can arise when using an estimated market price

of risk parameter λ∗V G which differs from the ‘true’ market price of risk parameter λV G or when using

an estimated kurtosis κ∗V G which differs from the ‘true’ kurtosis κV G. It follows from Figure 10 that

changing the underlying assumptions about the market price of risk parameter and the standardized

stock return distribution affects the estimated mean excess stock return.

This section assumes that the mean excess stock return is known, but the ‘true’ market price of

risk parameter λV G and the ‘true’ kurtosis κV G of the stock returns are unknown. We note that the

estimated market price of risk parameter λ∗V G unambiguously determines the estimated kurtosis κ∗V G

once the mean excess stock return is known. The blue line in Figure 9 indicates the annuity prices

V0 (λ∗V G, κ
∗
V G) for which the estimated mean excess stock return is equal to the ‘true’ mean excess

stock return. We observe that the values on the blue line are all close to the ‘true’ value. The reason

for this is that although the insurer makes two different types of errors, these errors have the opposite

sign, and combining them results in a relatively small effect on the annuity price.

Table 2 illustrates the impact of assuming a wrong kurtosis and/or a wrong market price of risk

parameter on the annuity price. In the case where the estimated parameters are equal to their ‘true’

values, the pricing error is zero. In all other cases, the insurer makes an error by assuming a wrong

kurtosis, a wrong market price of risk parameter or both. We note that the joint impact of the two

errors (0.0472%) is (at least) 4 times smaller than the impact of the error due to a wrong kurtosis

(0.2339%) or the error due to a wrong market price of risk parameter (-0.1942%).

Estimated Market Price of Risk Parameter
Estimated Kurtosis 0.3884 0.3874

5.36 0 -0.1942
3 0.2339 0.0472

Table 2. Impact of wrong market price of risk parameter and wrong kurtosis. This table
illustrates the impact of assuming a wrong kurtosis and/or a wrong market price of risk parameter
on the annuity price. The numbers denote the pricing error (expressed as a percentage). The table
assumes that stock returns are distributed according to a VG distribution, with ‘true’ market price of
risk parameter λV G = 0.3884 and ‘true’ kurtosis κV G = 5.36.
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6 Concluding Remarks

The pension landscape is rapidly evolving and this has increased the need for alternative annuity

products. This paper has proposed a new class of variable annuities that provides flexibility in

tailoring payout streams to individual preferences. More specifically, our proposed annuities allow

for buffering of portfolio shocks: the sooner an annuity payout occurs, the smaller its exposure to a

current portfolio shock will be. By allowing for buffering of portfolio shocks, insurers are able to

offer an affordable and an adequate annuity with a stable payout stream. We have also developed a

framework to deal with the risks inherent to our proposed annuities. That is, we have determined

annuity prices and underlying investment strategies that adequately hedge the liabilities of the

contracts. We have shown that the annuity price consists of two components; the first component is

equal to the initial value of the hedging portfolio and the second component corresponds to a capital

buffer which covers the unhedgeable part of future annuity payouts. Finally, we have illustrated how

insurers can use our framework to explore a parameter misspecification on the annuity price.

We identify various directions for future work. First, we assume that the specification of the

buffering function is exogenously given. An alternative approach would be to calibrate the

specification of the buffering function using consumption data. Another direction for future work

would be to develop a variable annuity contract which not only applies buffering of portfolio shocks

but also includes a guarantee (such as a minimum withdrawal guarantee).
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A Variance Gamma and other Lévy Distributions

We start this appendix by providing a few properties of the Variance Gamma distribution. Let

σV G, νV G > 0 and µV G, θV G ∈ R. The characteristic function of the random variable

X ∼ V G (σV G, νV G, θV G, µV G) is given by

φ (v) = eivµV G
(
1− ivθV GνV G + v2νV Gσ

2
V G/2

)−1/νV G . (48)

The mean and the variance of X are equal to µV G + θV G and σ2
V G + νV Gθ

2
V G, respectively.

The standardized random variable

X̄ =
X − E [X]√

Var [X]
(49)

is distributed according to:

X̄ ∼ V G(ζV GσV G, νV G, ζV GθV G,−ζV GθV G), (50)

where ζV G = 1/
√
σ2
V G + νV Gθ2

V G.

The empirical moments of X̄ are given by

m1 = E
[
X̄
]

= −ζV GθV G + ζV GθV G = 0, (51)

m2 = Var
[
X̄
]

= (ζV GσV G)2 + νV G (ζV GθV G)2 = 1, (52)

m3 = 2 (ζV GθV G)3 ν2
V G + 3 (ζV GσV G)2 νV GζV GθV G, (53)

m4 = 3 (ζV GσV G)4 νV G + 12 (ζV GσV G)2 ν2
V G (ζV GθV G)2 + 6 (ζV GθV G)4 ν3

V G

+ 3 (ζV GσV G)4 + 6 (ζV GσV G)2 (ζV GθV G)2 νV G + 3 (ζV GθV G)4 ν2
V G.

(54)

Table 3 provides a few properties of the Normal Inverse Gaussian and the Meixner distribution.

We now calibrate the Normal Inverse Gaussian (NIG) distribution. The calibrated parameter

values are given in Table 4.

Finally, Figure 11 shows the calibrated NIG density function (panel a) and a quantile-quantile plot

comparing the quantiles of the calibrated NIG distribution with the empirical quantiles (panel b).
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Normal Inverse Gaussian Meixner

Parameters α, δ > 0, β ∈ (−α, α), µ ∈ R α, δ > 0, β ∈ (−π, π), µ ∈ R
Notation NIG(α, β, δ, µ) MX(α, β, δ, µ)

φ(u) eiuµ−δ
(√

α2−(β+iu)2−
√
α2−β2

)
eiuµ

(
cos(β/2)

cosh((αu−iβ)/2)

)2δ

Mean µ+ δβ√
α2−β2

µ+ αδ tan(β/2)

Variance α2δ
(
α2 − β2

)−3/2
cos−2(β/2)α2δ/2

Standardized NIG
(
α, β, (α2 − β2)3/2, −(α2−β2)β

α2

)
MX

(
α, β,

2 cos2(β
2

)

α2 , − sin(β)
α

)
version

Table 3. Properties of other distributions. This table provides a few properties of the Normal
Inverse Gaussian and the Meixner distribution.

Model Parameters

αNIG βNIG δNIG µNIG
1.1284 0 1.43690 0

Table 4. Calibrated parameter values. This table shows the calibrated parameter values for the
Normal Inverse Gaussian (NIG) distribution.
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Figure 11. Density function and quantile-quantile plot. This figure illustrates the calibrated NIG density function
(panel a) and a quantile-quantile plot comparing the quantiles of the calibrated NIG distribution with the empirical
quantiles (panel b). Panel b shows all quantiles between 1% and 99%, with an increment of 1%.
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B Properties of the Expected Excess Stock Return

This appendix assumes that the stock return volatility is constant over time (i.e., σtj = σ for every j).

We can write the expected stock price as follows:

E
[
Stj
]

= E

[
S0 exp

{
j∑

k=1

rtk∆t+ e · tj +
√

∆t

j∑
k=1

σAk

}]

= S0 exp {e · tj}E

[
exp

{
j∑

k=1

rtk∆t

}]
E

[
exp

{
√

∆t

j∑
k=1

σAk

}]
.

(55)

Using (20) and the independence of A1, . . . , Aj , we find

E

[
exp

{
√

∆t

j∑
k=1

σAk

}]
=

j∏
k=1

E
[
exp

{
σ
√

∆tAk

}]
= φ

(
−iσ
√

∆t
)j
. (56)

Using (25), we can write (56) as follows:

E

[
exp

{
σ
√

∆t

j∑
k=1

Ak

}]
= eψ(σ)j∆t. (57)

Using j∆t = tj and (24), we find

E
[
Stj
]

= S0E

[
exp

{
j∑

k=1

rtk∆t

}]
exp {(e+ ψ (σ)) tj}

= S0E

[
exp

{
j∑

k=1

rtk∆t

}]
exp {R(λ, σ)tj} ,

(58)

with R(λ, σ) = e+ ψ (σ) = ψ (σ) + ψ(−λ)− ψ(σ − λ) (use (24)).

We can now prove the following desirable properties of R(λ, σ).

Theorem 5. The expected excess stock returnR(λ, σ) = ψ (σ)+ψ(−λ)−ψ(σ−λ) is always positive:

R(λ, σ) > 0 for any λ, σ > 0. (59)

Furthermore, R(λ, σ) is increasing in both its arguments:

R(λ2, σ)−R(λ1, σ) > 0, and R(λ, σ2)−R(λ, σ1) > 0, (60)
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for λ1 < λ2 and σ1 < σ2.

We first prove the following property:

R(λ, σ) = ψ(σ) + ψ(−λ)− ψ(σ − λ) > 0 for any λ, σ > 0. (61)

This property is equivalent to

ψ(σ) + ψ(−λ) > ψ(σ − λ) for any λ, σ > 0. (62)

Using (25) and (20), we can write (62) as follows:

E
[
eσ
√

∆tAj
]
E
[
e−λ
√

∆tAj
]
> E

[
e(σ−λ)

√
∆tAj

]
for any λ, σ > 0. (63)

Define X = eσ
√

∆tAj and Y = e−λ
√

∆tAj . By definition,

E[XY ] = E[X]E[Y ] + Cov(X, Y ), (64)

where Cov(X, Y ) denotes the covariance between X and Y . Clearly, Cov(X, Y ) < 0. Hence,

E
[
e(σ−λ)

√
∆tAj

]
= E[XY ] < E[X]E[Y ] = E

[
eσ
√

∆tAj
]
E
[
e−λ
√

∆tAj
]

for any λ, σ > 0. (65)

We now show that R(λ, σ) is increasing in both λ and σ. We note that the function ψ(σ) is convex.

Indeed,

ψ′′(σ) =
1

∆t

E

[(√
∆tAj −

E
[√

∆tAjeσ
√

∆tAj
]

E
[

eσ
√

∆tAj
]
)2

eσ
√

∆tAj

]
E
[
eσ
√

∆tAj

] > 0. (66)

By convexity,
∂R(λ, σ)

∂σ
= ψ′(σ)− ψ′(σ − λ) > 0. (67)

In a similar fashion, we find

∂R(λ, σ)

∂λ
= ψ′(σ − λ)− ψ′(−λ) > 0. (68)
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C Mathematical Proofs

Proof of (14)

Dividing ctj+h by ctj , we find

ctj+h
ctj

= F h
tj
× exp

{
h∑
k=1

gj+k∆t+
h∑
k=1

qkβj+h+1−kσtj+h+1−k

√
∆tAj+h+1−k

}
, (69)

where

F h
tj

= exp

{
j∑

k=1

(qj+h−k+1 − qj−k+1) βkσtk
√

∆tAk

}
. (70)

Taking the expectation of (69), we arrive at (14). We note that the parameter gj can be used to

control the expected payout stream.

Proof of (17)

Equation (17) follows from (69) by taking h = 1.

Proof of (18)

We have the following expression for F h
tj
/F 1

tj
:

F h
tj

F 1
tj

=

j∏
k=1

exp
{(
qj+h−(k−1) − qj−k+2

)
βkσtk

√
∆tAk

}
=

j∏
k=1

exp
{(
qj+1+h−1−(k−1) − qj+1−k+1

)
βkσtk

√
∆tAk

}
.

(71)

The term F h−1
tj+1

can be rewritten as follows:

F h−1
tj+1

=

j+1∏
k=1

exp
{(
qj+1+h−1−(k−1) − qj+1−k+1

)
βkσtk

√
∆tAk

}
=
F h
tj

F 1
tj

× exp
{

(qh − q1) βj+1σtj+1

√
∆tAj+1

}
.

(72)

Taking the logarithm on both sides of (72), we arrive at (18).

Proof of Theorem 1
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The pricing measure Q with Radon-Nikodym derivative ξtj is a feasible pricing measure (i.e.,

Q ∈ Q) if the following two conditions are satisfied (for any j ∈ {0, 1, . . . , J}):

EP
[
ξT | Ftj

]
= ξtj , (73)

EP

[
e−
∑j
k=1 rtk∆tξtjStj

]
= S0. (74)

We now show that the process
{
ξtj | j = 0, 1, . . . , J

}
given by

ξtj = exp

{
−

j∑
k=1

ψ(−λtk)∆t−
√

∆t

j∑
k=1

λtkAk

}
(75)

satisfies conditions (73) and (74).

To prove (73), we write ξT as follows:

ξT = ξtj exp

{
−

J−j∑
k=1

ψ(−λtj+k)∆t−
√

∆t

J−j∑
k=1

λtj+kAj+k

}
. (76)

Then we can write:

EP
[
ξT
∣∣Ftj] = EP

[
ξtj exp

{
−

J−j∑
k=1

ψ(−λtj+k)∆t−
√

∆t

J−j∑
k=1

λtj+kAj+k

}∣∣∣∣∣Ftj
]

= ξtjEP

[
EP

[
exp

{
−

J−j∑
k=1

ψ(−λtj+k)∆t−
√

∆t

J−j∑
k=1

λtj+kAj+k

}∣∣∣∣∣FtJ−1

] ∣∣∣∣∣Ftj
]

= ξtjEP

[
exp

{
−

J−j−1∑
k=1

ψ(−λtj+k)∆t−
√

∆t

J−j−1∑
k=1

λtj+kAj+k

}
e−ψ(−λtJ )∆t

EP

[
exp

{
−
√

∆tλtJAJ

} ∣∣∣∣∣FtJ−1

] ∣∣∣∣∣Ftj
]
.

(77)

Using

EP

[
exp

{
−λtJ

√
∆tAJ

} ∣∣∣∣∣ FtJ−1

]
= e∆tψ(−λtJ ), (78)

we find

EP
[
ξT | Ftj

]
= ξtjEP

[
exp

{
−

J−j−1∑
k=j

ψ(−λtj+k)∆t−
√

∆t

J−j−1∑
k=1

λtj+kAj+k

}∣∣∣∣∣Ftj
]
. (79)
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Continuing this approach of conditioning on the sets FtJ−2
,FtJ−3

, . . . ,Ftj+1
, we arrive at

EP
[
ξT | Ftj

]
= ξtj . (80)

To prove (74), we calculate e−
∑j
k=1 rtk∆tξtjStj :

e−
∑j
k=1 rtk∆tξtjStj = S0 exp

{
−

j∑
k=1

(rtk + ψ(−λtk)) ∆t−
√

∆t

j∑
k=1

λtkAk

}

× exp

{
j∑

k=1

rtk∆t+ etj +
√

∆t

j∑
k=1

σtkAk

}
.

(81)

Using (24), we find

e−
∑j
k=1 rtk∆tξtjStj = S0 exp

{
−

j∑
k=1

ψ(σtk − λtk)∆t+
√

∆t

j∑
k=1

(σtk − λtk)Ak

}
. (82)

We can then write

EP

[
e−
∑j
k=1 rtk∆tξtjStj

]
= EP

[
S0 exp

{
−

j∑
k=1

ψ(σtk − λtk)∆t+
√

∆t

j∑
k=1

(σtk − λtk)Ak

}]

= EP

[
EP

[
S0 exp

{
−

j∑
k=1

ψ(σtk − λtk)∆t+
√

∆t

j∑
k=1

(σtk − λtk)Ak

}∣∣∣∣∣Ftj−1

]]

= EP

[
S0 exp

{
−

j−1∑
k=1

ψ(σtk − λtk)∆t+
√

∆t

j−1∑
k=1

(σtk − λtk)Ak

}

e−ψ(σtj−λtj )∆tEP

[
e
√

∆t(σtj−λtj)Aj

∣∣∣∣∣Ftj−1

]]

= EP

[
S0 exp

{
−

j−1∑
k=1

ψ(σtk − λtk)∆t+
√

∆t

j−1∑
k=1

(σtk − λtk)Ak

}]
.

(83)

Continuing this approach of conditioning on the sets Ftj−2
,Ftj−3

, . . . ,Ft1 , we arrive at

EP

[
e−
∑j
k=1 rtk∆tξtjStj

]
= S0. (84)

Proof of Theorem 2

We determine V h
tj

using the pricing kernel technique derived in Section 3.1. The arbitrage-free price
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V h
tj

at time tj of the future annuity payout ctj+h is given by

V h
tj

= Etj
[
Mtj+h

Mtj

ctj+h

]
. (85)

Substituting (26) and (9) into (85), we arrive at

V h
tj

= Etj

[
exp

{
−

h∑
k=1

rtj+k∆t−
h∑
k=1

ψ(−λ)∆t−
√

∆t
h∑
k=1

λAj+k

}

× ctjF
h
tj

h∏
k=1

exp
{
gj+k∆t+ qkβσ

√
∆tAj+h−(k−1)

}]

= ctjF
h
tj
Etj

[
exp

{
−∆t

h∑
k=1

(
rtj+k + ψ(−λ)− gj+k

)}

×
h∏
k=1

exp
{

(qkβσ − λ)
√

∆tAj+h−(k−1)

}]
.

(86)

Using the definition of ψ (qkβσ − λ) (see (25)), we arrive at

Etj
[
exp

{
(qkβσ − λ)

√
∆tAj+h−(k−1)

}]
= exp {∆tψ (qkβσ − λ)} . (87)

Since we assume that the interest rate is a deterministic process, we find the following expression:

V h
tj

= ctjF
h
tj

exp

{
−∆t

h∑
k=1

(
rtj+k − gj+k + ψ(−λ)− ψ (qkβσ − λ)

)}
, (88)

which proves the theorem.

Proof of Theorem 3

We start by deriving the dynamics of the arbitrage-free annuity price V h
tj

. Using Theorem 2, we find

(the second equality follows from (18))

V h−1
tj+1

V h
tj

=
ctj+1

F h−1
tj+1

Ah−1
tj+1

ctjF
h
tjA

h
tj

=
ctj+1

Ah−1
tj+1

ctjA
h
tj

e(qh−q1)βσ
√

∆tAj+1

F 1
tj

.

(89)
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From (17), we find that

ctj+1
= ctjF

1
tj

egj+1∆t+q1βσ
√

∆tAj+1 . (90)

This gives the following expression:

V h−1
tj+1

V h
tj

= exp
{
gj+1∆t+ qhβσ

√
∆tAj+1

} Ah−1
tj+1

Ahtj
. (91)

The annuity factor can be rewritten using (31). We then find the following expression:

Ah−1
tj+1

Ahtj
= exp

{(
rtj+1

− gj+1 + ψ(−λ)− ψ (qhβσ − λ)
)

∆t
}
. (92)

Substituting (92) in (91), we arrive at

V h−1
tj+1

V h
tj

= exp
{(
rtj+1

+R (λ, qhβσ)− ψ (qhβσ)
)

∆t+ qhβσ
√

∆tAj+1

}
. (93)

Denote by W h
tj

the value of the investment portfolio at time tj which replicates the future annuity

payout ctj+h . We denote the share of W h
tj

invested in the risky stock by αhtj . This investment portfolio

is held for a period ∆t and is then re-balanced. We have that W h
tj

satisfies the following dynamic

equation:

W h−1
tj+1

= W h
tj

(
1− αhtj

)
ertj+1∆t +W h

tj
αhtje

[rtj+1+R(λ,σ)−ψ(σ)]∆t+σ
√

∆tAj+1 . (94)

We can approximate the exponentials as follows:

ertj+1∆t ≈ 1 + rtj+1
∆t, (95)

e[rtj+1+R(λ,σ)−ψ(σ)]∆t+σ
√

∆tAj+1 ≈ 1 +
[
rtj+1

+R(λ, σ)− ψ(σ)
]

∆t

+ σ
√

∆tAj+1 + ψ(σ)∆t.

(96)

The second approximation approximates the geometric rate of return by the arithmetic rate of return.

Substituting (95) and (96) into (94), we arrive at

W h−1
tj+1
≈ W h

tj
(1− αhtj)

(
1 + rtj+1

∆t
)

+W h
tj
αhtj

(
1 +

[
rtj+1

+R(λ, σ)
]

∆t+ σ
√

∆tAj+1

)
. (97)
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Rearranging terms and using the approximation

1 +
(
rtj+1

+ αhtjR(λ, σ)
)

∆t+ αhtjσ
√

∆tAj+1 ≈ e

[
rtj+1+αhtj

R(λ,σ)−
(
αhtj

)2
ψ(σ)

]
∆t+αhtj

σ
√

∆tAj+1

, (98)

we can write

W h−1
tj+1
≈ W h

tj
exp

{[
rtj+1

+ αhtjR(λ, σ)−
(
αhtj

)2

ψ(σ)

]
∆t+ αhtjσ

√
∆tAj+1

}
. (99)

We determine the fraction αhtj such that the random term in (99) matches the random term in (93):

αhtj = qhβ. (100)

We note that αhtj is independent of the stock return distribution. Indeed, the characteristic function

φ(v) does not appear in (100). However, the number of stocks the insurer has to hold depends on the

initial portfolio value V h
tj

. This value does depend on the characteristic function φ(v). By holding a

portfolio with αhtj invested in the risky stock and the remaining part invested in the risk-free account,

the insurer is able to approximately replicate the future annuity payout ctj+h . Indeed, using the

approximation

αhtjR(λ, σ)−
(
αhtj

)2

ψ(σ) ≈ R(λ, αhtjσ)− ψ(αhtjσ), (101)

we have that W h
tj
≈ V h

tj
.

At time tj , the contract consists of a stream of payouts ctj+h (h = 0, 1, . . . , J − j). To determine

the amount of wealth invested in stocks, we aggregate over αhtjV
h
tj

(h = 0, . . . , J − j):

αtjVtj =

J−j∑
h=0

αhtjV
h
tj
. (102)

Substitution of (100) in this expression proves the result.
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D Hedging Performance

Rebalancing Distribution Mean (%) Volatility 5% Quantile (%) 95% Quantile (%)
Weekly Gaussian 0.0090 0.0024 -0.37 0.41

Variance Gamma -0.0015 0.0035 -0.56 0.59
Normal Inverse Gaussian -0.0022 0.0035 -0.55 0.60

Monthly Gaussian 0.0036 0.0050 -0.75 0.88
Variance Gamma -0.0104 0.0073 -1.12 1.27
Normal Inverse Gaussian -0.00588 0.0073 -1.10 1.27

Yearly Gaussian 0.4300 0.0183 -2.17 3.75
Variance Gamma -0.0991 0.0259 -3.27 4.72
Normal Inverse Gaussian -0.1239 0.0259 -3.21 4.65

Table 5. Hedging error for different choices of ∆t and the underlying stock return distribution.
This table provides summary statistics of the hedging error for different choices of ∆t and the
underlying stock return distribution. The hedging error measures the performance of the underlying
investment portfolio to hedge the single annuity payout cT (with T = 20). We assume the exponential
buffering function (10) (with a1 = a2 = 1.6084 and η = 0.2) and set the (unconditional) expected
growth rate gj equal to −ψ (qjβσ). The risk-free interest rate rtj is set equal to 1.5% for each j, the
parameter β to 50%, and the number of simulations to 100k. For the parameter values of the VG
distribution, see Section 1.2. The parameter values of the Normal Inverse Gaussian distribution can
be found in Table 4.
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(f) Variance Gamma Distribution

Figure 12. Hedging error: stock return distribution and rebalancing frequency. The figure shows the impact of
the stock return distribution and the rebalancing frequency on the hedging performance. Log stock returns are distributed
according to a standard Gaussian distribution or a VG distribution; see Section 1.2 for the parameter values of the VG
distribution. We assume the exponential buffering function (10), with a1 = a2 = 1.6084 and η = 0.2. The risk-free
interest rate rtj is set equal to 1.5% for each j, the parameter β to 50%, and the number of simulations to 100k. The time
step ∆t equals 1/52 (upper plots), 1/12 (middle plots) and 1 (lower plots).
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E Constant-Mix Strategy

This appendix computes the hedging error associated with implementing the constant-mix strategy

(i.e., a constant share of wealth is invested in the stock market). The following table summarizes the

results.

Quantiles
Portfolio Strategy Mean Volatility 1% 5% 95 % 99%

0% -0.67 0 -0.67 -0.67 -0.67 -0.67
10% -0.37 0.26 -0.77 -0.69 0.13 0.48
20% -0.30 0.24 -0.70 -0.62 0.14 0.43
30% -0.23 0.21 -0.60 -0.52 0.15 0.38
40% -0.16 0.18 -0.50 -0.42 0.16 0.35
50% -0.08 0.16 -0.38 -0.31 0.20 0.34
60% 0.02 0.15 -0.29 -0.21 0.28 0.42
70% 0.12 0.18 -0.25 -0.16 0.44 0.62
80% 0.23 0.26 -0.26 -0.14 0.69 0.94
90% 0.35 0.36 -0.29 -0.15 1.00 1.40
100% 0.48 0.49 -0.34 -0.18 1.39 2.00

Our Strategy 0.00 0.01 -0.01 -0.01 0.01 0.02

Table 6. Hedging error associated with constant-mix strategy. This table provides summary
statistics of the hedging error associated with implementing the constant-mix strategy. The hedging
error measures the performance of the underlying investment portfolio to hedge the single annuity
payout cT (with T = 20). The first column denotes the fixed share of wealth invested in the
stock market. The last row represents the summary statistics of the hedging error associated with
implementing (33). We assume the exponential buffering function (10) (with a1 = a2 = 1.6084 and
η = 0.2) and set the (unconditional) expected growth rate gj equal to −ψ (qjβσ). Log stock returns
are distributed according to a VG distribution; see Section 1.2 for the parameter values of the VG
distribution. The risk-free interest rate rtj is set equal to 1.5% for each j, the parameter β to 50%, the
time step ∆t to one month, and the number of simulations to 100k.
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F Buffering Function under Habit Formation

This appendix derives the buffering function under the ratio model of habit formation (41).34 We

assume that A1, . . . , AJ are independent and identically distributed random variables. In addition, we

assume that rtj is a deterministic function of time and that σtj is constant. The pricing kernel is then

given by

Mtj = exp

{
−

j∑
k=1

rtk∆t− ψ(−λ)tj − λ
√

∆t

j∑
k=1

Ak

}
. (103)

We now consider the following optimization problem:

max
ctj

J∑
j=0

E

[
(1 + δ)−j∆t

1

1− γ

(
ctj
htj

)1−γ
]

s.t.
J∑
j=0

E
[
Mtjctj

]
≤ W0,

log htj − log htj−1
= ϕ log ctj−1

− ϑ log htj−1
,

(104)

with log ht0 = 0. Here, W0 represents the individual’s initial wealth.

Denote by ĉtj the ratio between ctj and htj , i.e.,

ĉtj =
ctj
htj

. (105)

Problem (104) is now equivalent to:

max
ĉtj

J∑
j=0

E
[
(1 + δ)−j∆t

1

1− γ
(
ĉtj
)1−γ

]

s.t.
J∑
j=0

E
[
Mtjhtj ĉtj

]
≤ W0,

log htj − log htj−1
= ϕ log ctj−1

− [ϑ− ϕ] log htj−1
.

(106)

This problem cannot be solved analytically due to the presence of htj in the budget constraint.

Therefore, we linearize the budget constraint around the trajectory
{
ĉtj
}

= 1.

34For the buffing function under the ratio model of habit formation in a continuous-time framework, see Van Bilsen
et al. (2018).
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We need the following partial derivatives:

∂
∑J

j=0Mtjhtj ĉtj
∂ ĉtj

= Mtjhtj +
J∑

k=j+1

Mtk

∂htk
∂ ĉtj

ĉtk , (107)

∂htk
∂ ĉtj

= ϕ (1− (ϑ− ϕ))k−j−1 htk
ĉtj
. (108)

Substituting (108) into (107) and evaluating (107) around
{
ĉtj
}

= 1, we arrive at

∂
∑J

j=0 Mtjhtj ĉtj
∂ ĉtj

∣∣∣∣∣
ĉt0=...=ĉtJ=1

= Mtj + ϕ
J∑

k=j+1

Mtk (1− (ϑ− ϕ))k−j−1 . (109)

Define

f (ĉt0 , . . . , ĉtJ ) =
J∑
j=0

Mtjhtj ĉtj . (110)

By virtue of Taylor series expansion, we have

f (ĉt0 , . . . , ĉtJ ) ≈ f (1, . . . , 1) +
J∑
j=0

∂ f (ĉt0 , . . . , ĉtJ )

∂ ĉtj

∣∣∣∣∣
ĉt0=...=ĉtJ=1

(
ĉtj − 1

)
. (111)

Substituting (109) into (111), we find

f (ĉt0 , . . . , ĉtJ ) ≈
J∑
j=0

Mtj +
J∑
j=0

(
Mtj + ϕ

J∑
k=j+1

Mtk (1− (ϑ− ϕ))k−j−1

)(
ĉtj − 1

)
. (112)

Hence, the budget constraint can be approximated as follows:

E

[
J∑
j=0

Mtjhtj ĉtj

]
= E [f (ĉt0 , . . . , ĉtJ )]

≈ E

[
J∑
j=0

Mtj +
J∑
j=0

(
Mtj + ϕ

J∑
k=j+1

Mtk (1− (ϑ− ϕ))k−j−1

)(
ĉtj − 1

)]

= E

[
J∑
j=0

Mtj +
J∑
j=0

Etj

{(
Mtj + ϕ

J∑
k=j+1

Mtk (1− (ϑ− ϕ))k−j−1

)(
ĉtj − 1

)}]

= E

[
J∑
j=0

Mtj +
J∑
j=0

Mtj

(
1 + ϕPtj

) (
ĉtj − 1

)]

= −ϕ
J∑
j=0

E
[
Mtj

Ptj

]
+

J∑
j=0

E
[
Mtj

(
1 + ϕPtj

)
ĉtj

]
.

(113)
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Here, we define

Ptj =
J∑

k=j+1

Etj
[
Mtk

Mtj

(1− (ϑ− ϕ))k−j−1

]
. (114)

The approximate optimization problem is now defined as follows:

max
ĉtj

J∑
j=0

E
[
(1 + δ)−j∆t

1

1− γ
(
ĉtj
)1−γ

]

s.t.
J∑
j=0

E
[
Mtj

(
1 + ϕPtj

)
ĉtj

]
≤ Ŵ0.

(115)

Here, Ŵ0 is defined such that the approximate optimal consumption strategy is budget-feasible.

We can solve (115) analytically. The Lagrangian L is given by

L =
J∑
j=0

E
[
(1 + δ)−j∆t

1

1− γ
(
ĉtj
)1−γ

]
+ y

(
Ŵ0 −

J∑
j=0

E
[
Mtj

(
1 + ϕPtj

)
ĉtj

])

=
J∑
j=0

E
[
(1 + δ)−j∆t

1

1− γ
(
ĉtj
)1−γ − yMtj

(
1 + ϕPtj

)
ĉtj

]
+ yŴ0.

(116)

Here, y ≥ 0 denotes the Lagrange multiplier associated with the budget constraint. The individual

aims to maximize (1+δ)−j∆t 1
1−γ

(
ĉtj
)1−γ−yMtj

(
1 + ϕPtj

)
ĉtj .

35 We have that the optimal solution

ĉ ∗tj satisfies the following first-order optimality condition:

(1 + δ)−j∆t
(
ĉ ∗tj

)−γ
= yMtj

(
1 + ϕPtj

)
. (117)

After solving the first-order optimality condition, we obtain the following maximum:

ĉ ∗tj =
(

(1 + δ)j∆tyMtj

(
1 + ϕPtj

))− 1
γ
. (118)

The optimal consumption choice is thus given by

c∗tj = h∗tj

(
(1 + δ)j∆tyMtj

(
1 + ϕPtj

))− 1
γ

(119)

with h∗tj the optimal habit level at time tj implied by the optimal solution.

35Karatzas and Shreve (1998) show that maximizing this expression is equivalent to maximizing (115).
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Substituting (103) into (118), we arrive at

ĉ ∗tj = exp

− log
[
(1 + δ)j∆ty

(
1 + ϕPtj

)]
−
∑j

k=1 rtk∆t− ψ(−λ)tj

γ
+
λ
√

∆t

γ

j∑
k=1

Ak

 . (120)

Define ŷj = log
[
(1 + δ)j∆ty

(
1 + ϕPtj

)]
−
∑j

k=1 rtk∆t − ψ(−λ)tj . We can now write the habit

level h∗tj as follows:

h∗tj = exp

{
j−1∑
k=0

ϕ (1− (ϑ− ϕ))j−1−k log ĉ ∗k

}

= exp

{
j−1∑
k=0

ϕ (1− (ϑ− ϕ))j−1−k

(
−1

γ
ŷk +

λ

γ

√
∆t

k∑
l=1

Al

)}

= exp

{
−

j−1∑
k=0

ϕ

γ
(1− (ϑ− ϕ))j−1−k ŷk +

λ
√

∆t

γ

j−1∑
k=1

Ak

j−1∑
l=k

ϕ (1− (ϑ− ϕ))j−1−l

}
.

(121)

Hence,

c∗tj = h∗tj exp

{
−1

γ
ŷj +

λ

γ

√
∆t

j∑
k=1

Ak

}

= exp

{
−

j−1∑
k=0

ϕ

γ
(1− (ϑ− ϕ))j−1−k ŷk −

1

γ
ŷj +

λ

γ

√
∆t

j∑
k=1

Aj+1−kqk

} (122)

with

qk = 1 +
k−2∑
l=0

ϕ (1− (ϑ− ϕ))l . (123)
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