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1 Introduction

Risk sharing between non-overlapping generations can theoretically be welfare improving.

The economic intuition behind this result is that it is optimal to spread risks over a broader

base (i.e. a larger number of generations) than is possible in financial markets in which only

overlapping generations are able to trade risk with each other. The incompleteness of

financial markets implies that there can be a role for a long-lived social planner to facilitate

risk sharing between non-overlapping generations. This point was made by Diamond (1977),

Merton (1983) and Gordon and Varian (1988). More recent contributions include Smetters

(2006), Teulings and De Vries (2006), Ball and Mankiw (2007), Bovenberg, Nijman, Teulings,

and Koijen (2007), Gollier (2008), Cui et. al. (2010) and Bovenberg and Mehlkopf (2014).

Several papers suggest that, by using its financial buffer efficiently, a pension fund with

mandatory participation may able to facilitate intergenerational risk sharing. Pension funds

that are able to facilitate intergenerational risk sharing can be found in many countries.

Examples include the the Japan Government Pension Investment Fund, the Canada Pension

Plan, the Government Pension Fund in Norway, the ATP funds in Denmark and the

occupational pension funds in the Netherlands, Switzerland and Iceland. Novy-Marx and

Rauh (2014) describe how risk-sharing may also be relevant for the US public sector pension

funds

If designed properly, a risk-sharing contract may lead to a welfare improvement for all

generations from an ex-ante perspective (i.e. before the economic shocks materialize that

determine the size and direction of risk-sharing transfers between generations). Many studies on

risk-sharing in pension funds abstract from labor-income risk, e.g. Teulings and De Vries (2006),

Bovenberg et al. (2007), Gollier (2008) and Cui et. al. (2010). The models of these papers find

that it is optimal for a pension fund to increase their stock market exposure (compared to a

setting without intergenerational risk-sharing) and spread financial-market risk over as many

generations as possible. By smoothing financial shocks to the collective fund over a large number

of generations, the time-diversification of risk is improved and welfare is increased. These papers

report large welfare gains from risk sharing. In addition, the models in these papers suggest

that it is optimal for a pension fund to apply high levels of ’smoothing’: retirement benefits

hardly respond to shocks in the funds funding levels. A low level of smoothing would be sub-
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optimal, because it would imply that a relatively large share of the current shock is absorbed

by current generations, while it is optimal when the shock is spread out over all current and

future generations.

In this paper we point out that the long-run dynamics of labor-income risk crucially

determine optimal risk-sharing rules. We show that, if stock and labor markets move together

in the long run, it is no longer efficient to shift current risks onto future generations, because

their human capital becomes correlated with current shocks. It may actually be optimal for a

collective pension plan to take less stock market risk than one would take in the absence of

intergenerational risk-sharing, instead of more. For all levels of labor-stock market

cointegration within the parameter range reported by Benzoni et al. (2007) it turns out not to

be optimal for the collective pension fund to shift current risks onto future generations. The

policy of smoothing, which was optimal in absence of labor income risk, is replaced with a

policy of - so to say - amplification. That is: the funding level of the pension fund is less

volatile than the level of retirement benefits. By doing so, the collective fund optimally

transfers risk from future generations to current generations, instead of the other way around.

We consider the OLG model of Gollier (2008) but extend this by adopting the labor income

and dividend processes from Benzoni et al. (2007) (BCG hereafter). BCG assume that labor

earnings are cointegrated with dividends on a stock portfolio. This modeling environment is

characterized by the property that stock and labor markets move together at long horizons. The

economic idea behind this assumption is that, in particular in the long-run, there are general

economic factors that affect both labor income and capital income in the same direction1

Consistent with empirical findings, the cointegration-framework of BCG allows for a low (or

zero) contemporaneous correlation between labor income shocks and stock returns, whereas

long-run correlations are high.2

1As pointed out by Baxter and Jermann (1997), the form of most production functions used in macroeconomic
theory imply that the long-run restriction that the factor shares of labor and capital are stationary. Indeed,
BCG provide empirical evidence for this hypothesis, by showing that labor income and dividends on stock
holdings are co-integrated. The estimates for the cointegration coefficient are significant, but fall in a wide
range. BCG find an estimate for the cointegration coefficient of 0.205 when using US data going back to 1929,
while the estimate is as low as 0.0475 when relying on the post-World War II sample period.

2Many studies feature low (or zero) correlations between aggregate labor income and stock returns, both
contemporaneously as well as at long horizons. See e.g. Lucas and Zeldes (2006), Jagannathan and Kocherlakota
(1996), Sundaresanz and Zapatero (1997), Carroll and Samwick (1997), Gourinchas and Parker (2002),
Campbell, Cocco, Gomes, and Maenhout (2001), Cocco, Gomes, and Maenhout (2005), Davis and Willen
(2000), Gomes and Michaelides (2005), Haliassos and Michaelides (2003), Viceira (2001). The assumption of
low correlations at long horizons is controversial, given the empirical evidence provided in BCG.
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BCG show that co-integration causes the human capital of young investors to become

strongly correlated with stock returns, which reduces their appetite to invest in the stock

market directly. In contrast to other studies that ignore long-run labor income risk, they find

that it can even be optimal for young investors to take a short position in stocks, as this

provides a hedge against future labor income shocks. This result could be a justification for

the high-levels of non-participation in stock markets by young investors (the stock

participation puzzle).

Many other papers have assumed that labor income and dividend flows are cointegrated,

see e.g. Baxter and Jermann (1997), Menzly, Santos, and Veronesi (2004), Santos and Veronesi

(2006) and Geanakoplos and Zeldes (2010). Earlier studies that investigate a link between

aggregate labor income and asset prices include Mayers (1974), Fama and Schwert (1977),

Black (1995), Jagannathan and Kocherlakota (1996), and Campbell (1996). In the study of

Campbell (1996), a high correlation between human capital and market returns is obtained in

a model in which there is no strong interrelation between stock and labor markets. Campbell

(1996) uses the same highly time-varying discount factor to discount both labor income and

dividends, which results in a high correlation between human capital and market returns.

This paper contributes to the existing literature in three ways. First, we relax the

assumption that labor income is risk-free in Gollier (2008) by allowing for long-run correlation

between labor and capital income and show that this will have large implications for optimal

risk-sharing. In doing so, we rederive the model of Gollier (2008) in continuous time (instead

of discrete time), which allows us to derive the results fully analytically.

The second contribution is that we highlight the model risk and parameter risk policy

makers face. Allowing for long-run correlation between labor and capital income reverses the

result from Gollier (2008) that a social planner would ideally shift risk to future generations.

Instead, if the correlation is strong enough, the social planner actually finds it optimal to shift

risk from future generations to current generations. Since long-run correlations are hard to

reliably estimate, policy makers face significant parameter risk. We perform a robustness check

and show that a minimax social planner would decide not to shift risk to future generations.

The third contribution to the existing literature is that we relax the assumption made in

BCG that all volatility in stock market returns is caused by long-term risk. Instead, we allow for
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a short-term risk component in stock market volatility, so that not all volatility in stock prices

is associated with structural changes in expected dividends. This model extension bridges the

modeling framework of earlier studies: the model of BCG corresponds to the extreme case where

all stock price movements are associated with long-term risk and have a permanent impact on

the real economy (future dividends and future labor income), while models like Gollier (2008)

which abstract from labor income risk are representative for the other extreme case where

all stock price movements are associated with short-term risk and leave future labor income

unaffected. This novelty in our modeling setup allows us to perform a robustness check on

the impact of long-run labor income risk on the risk appetite of young and future participants.

Our results show that the main qualitative conclusions in this paper are unaffected by the

introduction of a short term risk component in the model.

There are two other papers that explore risk-sharing in a setting in which stock and labor

markets are subject to a common risk factor: van Hemert (2005) and Bohn (2009). In the

framework of van Hemert (2005), labor income and capital returns follow a joint Markovian

process, thereby allowing for horizon-dependent correlations. However, the Markov process in

van Hemert (2005) is imposed to be stationary, implying that labor income is not risky in the

long run. Bohn (2009) uses a VAR model to estimate 30-year correlations between productivity

and capital returns. He reports a positive correlation between 30% and 60%, depending on the

specification of the VAR model. In line with our findings, Bohn (2009) finds that due to risky

labor income, workers bear systematically more risk than retirees. Efficient risk-sharing policies

should therefore shift risk away from workers to retirees. He concludes that safe pensions can

be rationalized as efficient only if preferences display age-increasing risk aversion, such as habit

formation.

The structure of the remainder is as follows. In section 2 we summarize the general setup of

the model by Gollier. In 3 we will (re)derive its results in continuous time. We continue with a

brief discussion of the model in 4. This then sets the stage for our extension with labor income

risk which is introduced in section 5 and in section 6 we derive our results. Finally, section 8

concludes.
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2 General setup

For comparability we will stay as close as possible to the model of Gollier (2008). The main

difference will be that we will work in continuous time and we will represent stock market

returns by a geometric Brownian motion with drift. Gollier works in discrete time and uses an

empirical distribution of past S&P 500 returns. Working in continuous time has the advantage

that we can derive all results analytically and it makes it easier to add labor income risk later

on.

We consider a model of overlapping generations with a defined contribution pension system.

Once a generation enters the labor market, it saves a fixed portion of income for retirement,

denoted by L(t). After n years, a generation retires and receives a one-time retirement benefit

of b(t)3. There is a continuum of generations which we will index by their retirement date T .

Each generation is of the same size, which is normalized to one. Hence, the total number of

generations that contribute to their retirement savings at any point in time is n. Following

Gollier, we will set n = 40 in our numerical illustrations.

We will be comparing two alternative institutional arrangements. First we consider the

situation in which each generation solves its own optimization problem, which we will refer to

as ’autarky’. Then, we will compare this to the case in which a hypothetical planner runs a

collective pension fund, which invests the collective wealth of all current and future generations.

We will refer to this as the solution with intergenerational risk-sharing.

Financial market

The financial market features two assets: a risk-less cash account and a stock index. The return

processes are:

dB(t)

B(t)
= rdt

dS(t)

S(t)
= µSdt+ σdzS

3We could think of b(t) as the value of an annuity that is being paid out during retirement.
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Markets are assumed to be complete, so asset prices are captured by a single stochastic discount

factor:

dM(t)

M(t)
= −rdt+ φSdzS (2.1)

where it follows from the definition of the stochastic discount factor that µS = r − σφS. For

comparability, we will set the parameters values in our illustrations and numerical examples

in accordance with the return distribution used by Gollier: r = 0.02, σ = 0.136 and the risk

premium −σφS = 0.039.

Preferences

The preferences of each generation are represented by a CRRA utility function. Since the model

considers a defined contribution setting, utility during the contribution phase is irrelevant for

the optimal investment problem. Therefore, we only consider utility defined over the retirement

benefit b(T ) here. So, if U(t, T ) denotes the expected utility at time t of the generation that

retires at date T , then:

U(t, T ) = Et
[
b(T )1−γ

1− γ

]
(2.2)

In autarky, it is assumed that individual generations cannot expose themselves to equity risk

before they enter the labor force. Once they enter, we will not impose a borrowing constraint.

So, individuals may borrow and take leverage. The advantage of this assumption is that

it allows us to derive our results analytically, while the utility effect of not imposing a no-

borrowing constraint during the lifetime of a generation has only a marginal effect on the level

of utility (as also pointed out by Gollier). In absence of a borrowing constraint, the inefficiency

in autarky comes solely from the fact that future generations are unable to get exposure to

shocks. that occur before their labor market entry. For generations that are currently alive

(T < (t+ n)) the problem is to maximize 2.2 with respect to b(T ) subject to:

W (t, T ) = Et
[
b(T )

M(T )

M(t)

]
(2.3)
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where W (t, T ) denotes total wealth of generation T at time t, which includes the present value

of future retirement savings. The optimal wealth process is subsequently found by determining

the evolution of the present value of the optimal retirement benefit over time.
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3 Optimal risk-sharing with deterministic labor income

Let us first consider the model with deterministic labor income, as studied by Gollier. So, we

have that L(t) = L. Total wealth at time t of generation T is given by:

W (t, T ) =


F (t, T ) + 1−e−rT

r
L for T ≤ t+ n

e−r(T−n)−e−rT
r

L for T > t+ n

(3.1)

where F (t, T ) is accumulated financial wealth, which is zero for generations that did not enter

the labor force yet.

Autarky

The solution to the (unconstrained) portfolio choice problem is well known since Merton (1969)

and Samuelson (1969). The law of motion of the optimal wealth process for those in the labor

force, is:

dW (t, T )

W (t, T )
=

(
r +

φ2

γ

)
dt− 1

γ
φSdzS, (3.2)

which implies that the optimal fraction of total wealth invested in the stock index is − 1
γ
φS
σ

.

The optimal retirement benefit is equal to terminal wealth, which, given time 0 information, is

b(T ) = W (0, T ) exp

{
rT +

(
φ2

γ
− 1

2

φ2

γ2

)
min[n, T ]− φ

γ

∫ T

max[0,T−n]
dzs(u)

}
(3.3)

where the minimum and maximum operator capture the fact that a generation may only take

stock market exposure while in the labor force.

When considering welfare, it will be useful to translate utility units into certainty equivalent

units. Define the certainty equivalent at time t, CE(t, T ), as the certain retirement benefit at

time T that would yield the same expected utility at time t as the stochastic benefit b(T ):

CE(t, T ) ≡ Et
[
b(T )1−γ

] 1
1−γ (3.4)

9



Then, in autarky, the certainty equivalent for each generation is given by:

CE(t, T ) = W (t, T ) exp

{
r(T − t) +

(
1

2

φ2
S

γ

)
min[T − t, n]

}
(3.5)

The term 1
2

φ2S
γ

captures the benefit per unit of time of being able to invest in the risky asset.

This is only possible during a maximum of n years for each generation.

First best solution

In autarky the benefit of taking stock market risk can only be reaped during a maximum of n

years. This is what makes the autarky solution inefficient in this model. There is potential

welfare to be gained by allowing future generations to take stock market exposure before their

own lifetime. If a social planner could somehow invest on behalf of future generations and

commit these future generations to actually bear the risk, the certainty equivalent would

become:

CEFB(t, T ) = W (0, T ) exp

{
rT +

(
1

2

φ2
S

γ

)
T

}
(3.6)

Note that current generations would not gain anything, since they were not constrained to begin

with. Future generations however would gain proportionally to the number of extra years the

planner can take risk on their behalf.

First best risk-sharing in a collective pension fund

Gollier suggests that this potential welfare gain may be realized by forming a collective pension

fund. If a benevolent social planner can force all generations to participate, the planner can

expose future generations to contemporaneous stock market risk, by making the benefits of

future generations contingent on today’s returns. The collective fund could act as a vehicle to

transfer today’s gains or losses to future generations

Let the utility function of the planner be a simple weighted sum of all individual generations

utilities:

U(t) = Et
[∫ ∞

t

β(T )γ
b(T )1−γ

1− γ
dT

]
(3.7)
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where β(T )γ is the welfare weight the planner puts on generation T . We will be more specific

about these weights in a moment. Let us furthermore assume that the planner is not borrowing

constrained. Again, not imposing a constraint has the benefit that the optimal solution can be

found analytically. The planner then maximizes 3.7 subject to

W̃ (0) = E0

[∫ ∞
t

b̃(T )
M(T )

M(0)
dT

]
(3.8)

where W̃ (0) is the planners initial total wealth, which is equal to aggregate financial wealth of

current generations, plus the present value of all future contributions by all generations. Let

us refer to the present value of future contributions as human capital4.

The solution to the planners problem is again the well known solution to Mertons’ problem,

but now in a context with intermediate consumption and an infinite horizon. So, the process

for optimal total wealth is given by:

dW̃ (t)

W̃ (t)
=

(
r +

φ2
S

γ

)
dt−

˜b(t)

W̃ (t)
dt− φS

γ
dzS (3.9)

And the process for the collective pension funds wealth, F̃ (t) is:

dF̃ (t)

F̃ (t)
=

(
r +

W (t)

F (t)

φ2
S

γ

)
dt− nL− ˜b(t)

F̃ (t)
dt− W̃ (t)

F̃ (t)

φS
γ
dzS (3.10)

The optimal fraction of total wealth invested in the stock index is the same as in the

autarky problem. The difference, however, is that the planner applies this weight to aggregate

total wealth, which includes the human capital of future generations, resulting in a higher

overall investment in the stock index. Total investment in the stock index in autarky is equal

to − 1
γ
φS
σ

∫ n
0
W (t, T )dT , while the collective planner invests − 1

γ
φS
σ

∫∞
0
W (t, T )dT in the stock

market. So, the planner will always take more stock market risk on aggregate compared to

autarky. For our parameter choices so far, the present value of aggregate human capital is

H̃0 = yn
r

= 2000L. If we assume that in the initial distribution of financial wealth corresponds

to the median scenario in autarky aggregate initial financial wealth is F̃0 = 1732L. The median

investment in stocks by the collective fund is then 1540L, while in autarky median aggregate

4Note that in our defined contribution setting, this definition of human capital only captures the part of
human capital which is saved for retirement.
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investment in the stock market is only 972L.

In addition to choosing the optimal portfolio allocation, the planner also decides what the

optimal rule is for the distribution of retirement wealth. The optimal retirement benefit to

generation T is given by:

b̃(T ) = b̃(0)β(T ) exp

{
1

γ

(
r +

1

2
φ2
S

)
T − 1

γ
φS

∫ T

0

dzS(u)

}
(3.11)

where we normalized β(0) to one. This implies that the retirement benefit follows the following

process:

db̃(t)

b̃(t)
= (...)dt− φS

γ
dzS (3.12)

where we suppress the drift term for simplicity (note that it will depend on our choice of β(T )).

The retirement benefit fluctuates one-to-one with aggregate total wealth and all generations

share proportionally in todays shock. Notice that collective pension fund wealth is always more

volatile than the retirement benefit, due to the W̃ (t)

F̃ (t)
term in 3.10. In the pension industry

this is often described as ‘smoothing’. All generations that still have some human capital

prefer to take more stock market risk (as a share of financial wealth), than the currently

retiring generation. The fund takes this extra risk on their behalf, but, to not over expose

the currently retiring generation, shocks to the funding level are only gradually transmitted

into the retirement benefit. This could be seen as a justification for the fact that collective

pension funds in practice often apply various kinds of smoothing mechanisms, either explicitly

or through their valuation assumptions of assets and liabilities.

Welfare effects

Let us now turn to the welfare effect of the risk-sharing arrangement. The certainty equivalent

for each generation can be found by pluging the optimal retirement benefit in 3.11 into the

definition of the certainty equivalent (3.4). This gives us that

C̃E(0, T ) = b̃(0)β(T ) exp

{
1

γ

[(
r +

1

2

φ2
S

γ

)
T

]}
(3.13)
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Now, we still need to specify β(T ). Our choice of β(T ) will determine how the funds wealth

is distributed across generations. One choice of β(T ) could be to set it such that the market

consistent present value of the reitrement benefit for each generation is unchanged compared to

the autarky solution. We could think of this particular choice of β(T ) as a non-re-distributive

choice. If we do so, the welfare gain for all generations would be exactly as given in equation

3.6. This would imply though, that the expected utility of generations far into the future goes

to infinity. Hence, the welfare weights would have to be exploding too. If not, the planner

would rather bring some consumption forward. Gollier suggests to choose welfare weights such

that all generations obtain the same certainty equivalent5. A downside of this approach is that

this does not ensure that the introduction of risk-sharing is a Pareto improvement. As a matter

of fact, in our calculations, it is not. Older generations have a higher certainty equivalent in

autarky simply because they do not face much uncertainty anymore. If the introduction of

risk-sharing implies that their certainty equivalent is equalized with future generations, this

lowers their utility. We therefore decide to take a slightly different approach. We will choose

the welfare weights such that all generations see their certainty equivalent level of consumption

at the initial date increase by the same factor α. So, we choose β(T ) such that:

C̃E(0, T ) = αCE(0, T ) (3.14)

Combining 3.14 with 3.13 then implies that:

β(T ) =
CE(0, T )

CE(0, 0)
exp

{
−1

γ

[(
r +

1

2

φ2
S

γ

)
T

]}
(3.15)

If we, like Gollier, set γ = 5 we find that α = 1.113, so the certainty equivalent for all

generations increases by 11.3 percent. Gollier, using his choice of β(T ) reports a 19 percent

welfare gain for future generations. If we use the welfare same welfare weights as Gollier, we

find that future generations gain 23 percent6. Current generations however lose in this case.

For example, the currently retiring generation would face a welfare loss of 3.7 percent.

5The certainty equivalent for all generations is particularly simple in this case: C̃E(0, T ) = C̃E0 =

W̃ (0)
(
r + 1

2
φ2

γ

)
6Since Gollier uses an empirical S&P 500 return distribution and works in discrete time, we may expect to

see some differences here.

13



4 Modeling discussion

The Gollier model, like other models that assume risk-free labor income, leads to three main

conclusions with respect to optimal risk-sharing in a collective pension fund. Firstly, optimal

risk-sharing significantly improves welfare. Secondly, if this welfare improvement is

implemented by the introduction of a collective pension fund, the collective fund would

optimally take more stock market risk than one would take in a collection of individual (or

generational) retirement accounts. This is often used as a justification in practice for large

collective pension funds to choose relatively risky asset protfolios. Thirdly, the collective fund

optimally smooths retirement benefits. Retirement benefits fluctuate less then one-for-one

with the pension funds return realization. This is a logical consequence of the fact that future

generations want to take relatively more risk with their financial wealth due to the presence of

risk-free human capital.

Of course, we should be careful when applying this model to real-world pension plan design.

One important problem is that social planners do not exist outside our modeling environment.

The question is if the optimal solution is politically feasible. Gollier also points this out. He

mentions that future participants may not be willing to bear the risky outcomes that were

realized before their life-time. We would like to add to this that this may not be the only

concern, since typically older generations have more political power. A bigger concern may

actually be that the currently older generations use their political power to take a larger share

from the collective fund than the social planner would find optimal.

In practice, this is a particularly difficult political problem since the optimal distribution of

benefits depends on what one beliefs about the ’true’ model. Even if all generations could agree

to implement the planners solution, one still has to find agreement about the appropriate choice

of parameter values. For example, the future equity premium is not objectively observable.

Yet, in our model setting, the current level of the retirement benefit is very sensitive to this

parameter. If one were to argue that the equity risk-premium is one percentage point higher,

4.9% instead of 3.9% in our illustration, the optimal retirement benefit of the current generation

would increase by 20%. This highlights that there are significant incentives for the older

generations to be overly optimistic about the future risk-return trade-off.

The discussion should not be limited to parameter choices, only. The question is if we are
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considering the ’right’ model more generally. Alternative specifications may lead to different

conclusion. The rest of this paper could be considered an illustration of this. A particularly

strong assumption so far has been that future labor income is risk-free. Consequently in the

model future generations are not exposed to risk at all. We will consider what happens when

we relax this assumption and introduce labor income risk. In particular, we will focus on the

case where labor income and stock market performance are related in the long-run. In the

setup we considered so far the stock index may diverge indefinitely from labor income, which

means that either dividends diverge or that the discount rate diverges. This seems to be an

unwanted feature of the model. For short horizons this may not be such an issue, but when we

consider risk-sharing over multiple generations, it should be a concern.

Over long-horizons, it seems reasonable to believe that capital and labor income are

cointegrated. This point is, for example, made in Benzoni et al. (2007) (BCG hereafter). BCG

subsequently argue that, if labor income is cointegrated with the dividend process, investors

may want to invest significantly less in stocks. BCG show that the optimal investment in

equity may even be negative for the very young. Due to the long-run correlation, shorting

stocks could provide a hedge against negative developments in future labor income.

We will next investigate how the conclusions regarding intergenerational risk-sharing and

optimal pension fund investment change if we introduce labor income risk as modeled by BCG.

15



5 Adding labor income risk

BCG suggest to model the long-run relation between labor income risk and stock market risk

by letting the labor-to-dividend income ratio follow a mean-reverting process. We will follow

their example here. We will first introduce the dividend process and subsequently the labor

income process. After that we will determine the sensitivity of human capital to stock market

risk.

Dividends and the stock price process

The dividend process follows a geometric Brownian motion with drift:

dD(t)

D(t)
= gddt+ σdzS, (5.1)

where gd is the average growth rate of dividends. The pricing kernel is still defined as before

(2.1). Hence, the stock price, the price of a claim to the stream of dividends between now and

infinity, can be found to be:

P (t) =
D(t)

r − φsσ − gd
(5.2)

Let S(t) denote the value of a stock index that reinvests any dividends received. It then follows

from the pricing kernel that the instantaneous return on the stock index will be:

dS(t)

S(t)
= (r − φSσ)dt+ σdzS (5.3)

This is exactly the same stock return we saw before. The fact that we have have explicitly

modeled the stock price as a function of the underlying uncertain dividend flow, now allows us

to specifically model labor income such that its correlation with the stock process is low over

short horizons but higher over long horizons.
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Labor income

BCG suggest to model the cointegration of labor income and the stock market by letting the

dividend-labor income ratio follow a mean-reverting process. Define:

y(t) ≡ `(t)− d(t)− ¯̀d (5.4)

where `(t) is log labor income, d(t) is log dividend income and ¯̀d is the long-run mean log

labor income to dividend ratio. It is then assumed that y(t) follows a standard mean reverting

Ornstein-Uhlenbeck process:

dy(t) = −κy(t)dt+ νLdzL(t)− νSdzS(t) (5.5)

where dzL(t) is another standard Brownian motion that captures the part of labor income risk

that is uncorrelated to stock market risk. We will here set this source of risk to zero, since our

focus is on the sharing of financial market risk in collective pension schemes. Combining 5.1,

5.4 and 5.5, and setting νl = 0 we find that the process for log labor income is:

d`(t) =

(
−κy(t) + gd + ¯̀d− 1

2
σ2

)
dt+ (σ − νS)dzS(t) (5.6)

We will assume that labor income is contemporaneously uncorrelated with stock market

risk by setting νS = σ. Notice that in the long-run labor income will still be correlated through

the mean-reversion in y(t). We can see this more clearly when we solve for labor income at

time t conditional on time s < t information:

L(t) = L(s) exp

{
−κB(t− s)y(s) + (gd + ¯̀d− 1

2
ν2S)(t− s)

+κνS

∫ t

s

B(t− v)dzS(v)

}
(5.7)

where B(x) = 1
κ

(
1− e−κ(x)

)
. In our numerical illustrations, we will set (gd+ ¯̀d− 1

2
ν2S) = 0, such

that there is no expected real income growth in case κ = 0. By doing so, κ = 0 corresponds

exactly to the Gollier setting (which does not feature income growth).
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Human capital process

Now we have specified the labor income process, let us consider what the present value of labor

income looks like. In what follows it will be particularly useful to know what the correlation

of human capital with stock market risk looks like.

In the appendix we show that the present value at time t of the future labor income cash-flow

at time τ , denoted by PVL(y, t, τ) can be written as:

PVL(y, t, τ) = L(t) exp {A(τ − t)− κB(τ − t)y(t)} (5.8)

where A(x) is a function of the horizon only (which can be found in the appendix (A6)) and

B(x) is as specified above. Hence, the present value of human capital for generation T is:

H(y, t, T ) = L(t)

∫ T

max[t,T−n]
exp {A(τ)− κB(τ)y(t)} dτ (5.9)

From 5.9 we can find the exposure of human capital to dzS:

dH(y, t, T )

H(t, T )
= (...)dt+ σh(y, t, T )dzS (5.10)

with

σh(y, t, T ) ≡ B̄(y, t, T ) =

∫ T
max[t,T−n] PVL(y, t, τ)B(τ − t)dτ∫ T

max[t,T−n] PVL(y, t, τ)dτ
κ νS (5.11)
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6 Optimal risk-sharing when labor income and dividend

growth are co-integrated

Now, let us turn to the optimization problem in autarky. We did not add new sources of risk,

so the optimization problem did not significantly change. The stochastic discount factor is as

before and each individual generation still maximizes 2.2 subject to 2.3. Hence, the law of

motion of optimal total wealth is as before (see 3.2). The crucial difference however, is that the

present value of labor income is now stochastic and correlated with long-term stock-returns.

Let dG denote actual total wealth as a function of the chosen portfolio weight in stocks,

then we have now that:

dG

G
= (...)dt+ ws(t, T )σdzS + h(t, T )σh(t, T )dzS (6.1)

where ws(t, T ) is the share of total wealth invested in the stock index, h(t, T ) is human capital

as a share of total wealth and σh(t, T ) is the exposure of human capital to the equity shock,

dzS. We suppressed the drift term for simplicity. The optimal level of ws(t, T ) can be found by

setting the volatility term of the actual wealth process 6.1 equal to the volatility term of the

optimal wealth process 3.2. This gives us:

w∗S(t, T ) = −1

γ

φS
σ
− h(t, T )

σh(t, T )

σ
(6.2)

In addition to the standard speculative demand we had before, we now have a hedging demand

that compensates for the fact that labor income now also provides exposure to dzS. Since

σh(t, T ) is a weighted average of strictly positive terms, the hedging term in 6.2 is strictly

negative. So, as BCG pointed out, a consequence of co-integration between labor income and

dividend income, is that the optimal investment in the stock market is lower than in a model

without co-integration.

How big the impact of co-integration is, is driven by our choice of κ, the strength of mean-

reversion in the dividend-labor-income ratio. BCG argue that empirical estimates of κ are

rather imprecise, due to the limited availability of long-horizon data. They use κ = 0.15

as their baseline parameter choice. Depending on the different sample periods they consider
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though, they find levels of κ ranging from 0.05 to 0.2. At the end of the day, the value of κ is

a subjective belief and we do not intend to make a claim about its ”true” value here. Instead,

we merely illustrate how different beliefs about κ will change the results. The optimal equity

exposure for different values of κ are given in figure 1. Notice that the limiting case where

κ = 0 coincides with the setup we considered in the previous section without labor income risk.
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Figure 1. Optimal stock market exposure Panel (a) illustrates the optimal exposure to
the stock index for different levels of mean-reversion in the dividend-labor income ratio (κ).
Panel (b) shows the same exposures, but now as a percentage of financial wealth. Both graphs
are based on the median scenario with intitial condition y(0) = 0.

Certainty equivalent

For completeness, let us finish by considering the certainty equivalent levels of consumption in

autarky. Since the optimal total wealth process is unchanged, the certainty equivalent level of

consumption also looks very similar, with one important difference: unlike in the Gollier setup,

total wealth of unborn generations is now also stochastic. The certainty equivalent for future

generations is therefore slightly different.

CE(0, T ) =


W (0, T ) exp

{(
r + 1

2

φ2S
γ

)
T
}

T ≤ n

E0 [H(T − n, T )1−γ]
1

1−γ exp
{(
r + 1

2

φ2S
γ

)
n
}

T > n

(6.3)

where H(t, T ) is the value of human capital of generation T at time t. The term in expectations

is the present value of human capital on the moment a generation enters the labor market. As
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a matter of fact it is not straight-forward to derive an analytic expression for this expectation,

so we will determine it later numerically when comparing the certainty equivalent in autarky

to the setting with intergenerational risk-sharing.

Collective pension fund with risk-sharing

Let us now consider the collective pension fund planners problem. The planner still maximizes

3.7 subject to 3.8. Hence, like the individual generations problem, the optimal exposure of total

wealth in the planners problem is unchanged. Also here, the main difference is that human

capital already provides exposure to equity risk. The optimal exposure to the stock index for

the planners problem therefore is:

w̃S(t, T ) = −1

γ

φS
σ
− h̃(t)

σ̃h
σ

(6.4)

This looks very similar to to the autarky solution of an individual generation, except that h̃(t)

is aggregate human capital as a share of aggregate total wealth and

σ̃h = B̃(t) =
∫∞
t PVL(τ−t)B(τ−t)dτ∫∞

t PVL(t,τ)dτ
κνS is the exposure of the aggregate human capital to stock

market risk.

The optimal exposure to the stock index chosen by the planner is lower than in the setting

without co-integration of labor income and dividend income. Since B̃(t) is increasing in κ, the

stronger the mean-reversion in the labor income to dividend ratio, the less the collective fund

will invest in stocks. This is illustrated in figure 2. Panel (a) shows the allocation of aggregate

financial wealth to stocks in the initial situation, both in autarky and with optimal risk-sharing.

The difference between the two lines tells us how much risk the collective fund takes on behalf

of future generations. Note that, given our parameter choice, only if κ is approximately below

1.8, the collective fund should take additional risk on behalf of future generations. When κ is

higher, the planner finds it optimal to actually take less risk on aggregate and hence optimally

allocate some risk from future generations to current generations.

Panel (b) compares the volatility of collective fund wealth and the retirement benefit. In

the absence of long-run correlation (κ = 0) this ratio was bigger than one. Fund wealth was

more volatile than the retirement benefit which we referred to as ’smoothing’. In Panel (b) we

now see that only for levels of approximately κ < 0.04 it is optimal for the pension fund to
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Figure 2. Optimal aggregate stock market exposure Panel (a) illustrates the optimal
exposure to the stock index for different levels of mean-reversion in the dividend-labor income
ratio as a percentage of aggregate total wealth both in Autarky and in the setup with a collective
pension fund with intergenerational risk-sharing (κ). Panel (b) shows the instantaneous
volatility of collective pension fund wealth relative to the volatility of the retirement benefit.
Both panels assume wealth is at its initial level, where aggregate human capital is approximately
50% of total wealth and y(0) = 0

apply some level of smoothing. If κ > 0.04 the mechanism reverses. The pension fund takes

less risk than is optimal for the retiring generation and hence the fund does not ’smooth’ its

shocks. Instead, shocks are amplified into the retirement benefit, so to say. At low levels of κ,

the pension planner wants to take equity risk on behalf of future generations. So, the fund is

rather volatile, but this risk is carried over to future generations. If κ is low instead, the planner

optimally takes less risk and actually uses the fund to transfer some of the human capital risk of

future generations to current generations by amplifying the funds risk into current retirement

benefits.

Welfare effects

Let us again assume that the social planners sets the welfare weights such that the certainty

equivalent of all generations increases by the same factor α. So, β(T ) is still defined as in

3.15. Unlike the setting with risk-free human capital, the certainty equivalent in autarky is

now horizon dependent for future generations and can only be obtained numerically. We do so

for the range of κ from 0 (risk-free human capital) to 0.2 (the upper bound reported by BCG).

Figure 3 shows the welfare gain.
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Figure 3. Welfare gain from optimal risk-sharing This figure shows the percentage
increase in certainty equivalent retirement benefit between autarky and optimal risk-sharing.
The welfare weights are chosen such that the percentage gain of all generations is the same.
The figure assumes wealth is at its initial level, where aggregate human capital is approximately
50% of total wealth and y(0) = 0

We see that the boundary case, where kappa is 0, corresponds to the welfare gain of 11.3

percent we saw before. For values of kappa in the range reported by BCG (0.04 - 0.2), the

welfare gain ranges from 1 to 4 percent. In this case the welfare gain is not only much smaller,

as we saw before, it also comes from a different source. This welfare gain is no longer a benefit

from extra overall risk-taking. It is a benefit from the fact that current generations accept some

risk from future generations.

The welfare gain is minimized at approximately κ = 0.015. This roughly coincides with

the point where the optimal portfolio allocation to the stock market is the same in autarky

and under the optimal risk-sharing scheme. In this case, the optimal investment in the stock

market on behalf of future generations is exactly 0. So, the social planner does not allocate any

risk from current to future generations or vice-versa. The planner still achieves some welfare

gain though by re-allocating some risk among future generations.

Ambiguity

The possible presence of co-integration has a significant impact on the optimal policy of the

social planner. At the same time, it is hard to make precise statistical statements about the

presence of co-integration. Therefore, we will now consider what the consequences are if the
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social planner is ambiguous about the exact value of κ.

First we will illustrate what the impact on the welfare of different generations is if the

planner follows a policy that is based on a wrong estimate of κ. We perform the following

exercise. We assume that the true value of κ is 0.05. Next, we assume that during a period of

10 years the social planner implements the optimal risk-sharing policy based on a potentially

wrong value of κ. After this period, the planner will revert to the optimal policy based on the

correct κ. This assumption is a pragmatic way to make sure that the system break down. If

we were to let the planner follow the wrong policy for too long, the probability of the collective

asset value going to zero becomes non-negligible and we would get nonsensical results. Figure

4 shows the welfare implications for the different generations.
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Figure 4. Welfare under wrong choice of κ Panel (a) shows the welfare impact if the
social planner chooses the optimal policy based on a potentially wrong value of κ. The true κ
is assumed to be 0.05 and the different lines illustrate the welfare gain under different policy
choices. The figure assumes that after ten years the planner reverts to the optimal policy for
the actual value of κ. In each scenario, the planner has the same time-preference (β(T )). Panel
(b) isolates the effect of the suboptimal allocation to risk only

If we first looks at panel 4a, we see that the impact of picking the wrong κ is rather extreme.

The lines show the welfare gain of each generation compared to autarky. The autarky solution

is based on the optimal policy using the actual κ. Basing a policy on the wrong κ has two

major implications. Firstly, it leads the social planner to wrongly measure the riskiness of

human capital. Consequently, the planner chooses the wrong asset allocation. A second issue

is that the social planner will also value human capital incorrectly. This leads the planner to

set a sub-optimal pay-out rate for the retirement benefits. This second effect actually has the
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biggest welfare effect. For example, if the planner believes that κ = 0, human capital risk-free

and hence relatively valuable. Consequently, the planner is too optimistic and starts to pay

out too high benefit levels. We see in the figure that initially the planner starts to pay out a

retirement benefit that is almost 40 percent higher than under the correct policy. Obviously

this causes the collective assets to be drawn down at a sub-optimally high pace. After ten years,

when the planner returns to the true optimum, this is clearly revealed, as all future generations

have now lost 30 percent in certainty equivalent terms compared to autarky. Panel 4b allows us

to disentangle which part of this 30 percent is due to the sub-optimal asset allocation and which

part is due to the sub-optimal drawn down of collective assets. Panel 4b shows the welfare effect

in case only the asset allocation is based on the wrong κ. We see that the 30 percent welfare

loss for all T > 10 generations is for 8 percentage points due to the sub-optimal asset allocation

and for 22 percentage points due to the planners’ overly optimistic benefit distribution.

Robust policy making

To illustrate the impact of a wrong policy choice, we had to assume what the true value of κ

is. The whole point is though that in practice the value of κ is unknown. Therefore, policy

makers may want to come up with a robust choice for the vaue of κ to base their policy on.

One choice could be a minimax level of κ. Suppose that the policy makers consider all values

for κ between 0 and 0.2 to be realistic, our numerical calculations show that the optimal policy

based on κ = 0.19 is the minimax policy. An important driver for this result is that high

levels of kappa are associated with lower levels of utility, since the value of human capital

is lower. Consequently, a minimax policy tends to favor policies that are optimal in those

scenarios where the value of κ is unfavorable. This implies that the social planner that follows

a minimax approach would decide not to shift risk to future generations.
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7 Short versus long-run risk

In the setup with labor income and dividend income cointegration, all stock market risk was

long-run risk. All shocks had a permanent impact on the level of the dividend cash-flow, on

the stock price and in the long-run on the level of labor income. We saw that this reduces the

appetite for stock market risk by young and future generations. But what if not all risk is long-

run risk? We will here illustrate that the results from the model by Gollier (2008) also coincide

with the extreme case, in a model with long-run and short-run risk, where only short-run risk

earns a risk-premium.

7.1 Adding short-run risk

The dividend cash-flow is now given by:

D(t) = Dlr(t)×Dsr(t) (7.1)

where Dlr(t) is the long-run component of the dividend cash-flow and Dsr(t) is a proportional

short-run component. Let the long-run component follow the same process we saw in the

previous section:

dDlr(t)

Dlr(t)
= gddt+ σlrdzlr, (7.2)

and let the log of the short-run component follow:

d logDsr(t) = −κsr logDsr(t) + σsrdzsr (7.3)

So, the dividend process we used before now acts as a long term trend and we added a

proportional temporary deviation from this trend. The long term trend is co-integrated with

the labor income process, as before (cf. 5.4). For simplicity assume that the innovations to

the short run deviation (dzsr) and the innovations to the the long-run trend component (dzlr)

are uncorrelated.
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Since we introduced a new source of risk, extend the pricing kernel as follows:

dM(t)

M(t)
= −rdt+ φlrdzlr + φsrdzsr (7.4)

The return on the stock index (a claim on the stream of future dividends) then becomes:

dS(t)

S(t)
= (r − σS,sr φsr − σlrφlr) dt+ σS,lrdzlr + σS,srdzsr (7.5)

where σS,sr = σS,sr(Dsr(t)) depends on the current level of the short-run dividend component

(see appendix for details).

7.2 Optimal allocation in autarky

In order to obtain the optimal exposure to both the long and short-run shocks, an investor

will now need at least two assets that jointly span both dimensions of uncertainty. We will not

explicitly specify these assets, but one could think of two different portfolios of stocks that each

have different exposure to the long-run and short-run shock (i.e. growth and value stocks). If

we assume that the financial market is complete, the individual can obtain any combination of

exposures to the two shocks and the optimal wealth process during life in autarky follows:

dW (t, T )

W (t, T )
=

(
r +

φ2
sr + φ2

lr

γ

)
dt− 1

γ
φlrdzlr −

1

γ
φsrdzsr, (7.6)

and the certainty equivalent is:

CE(0, T ) =


W (0, T ) exp

{(
r + 1

2

φ2sr+φ
2
lr

γ

)
T
}

T ≤ n

E0 [H(T − n, T )1−γ]
1

1−γ exp
{(
r + 1

2

φ2sr+φ
2
lr

γ

)
n
}

T > n

(7.7)

The optimal autarky solution is very similar to the solution we saw before. The only difference

is that there are now two sources of risk and two relevant risk-premia.
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7.3 Optimal risk-sharing

The solution to the planners problem is also very similar to the problem we saw before. The

optimal process for total wealth in the planners problem becomes:

dW̃ (t)

W̃ (t)
=

(
r +

φ2
sr + φ2

lr

γ

)
dt−

˜b(t)

W̃ (t)
dt− φsr

γ
dzsr −

φlr
γ
dzlr (7.8)

and the optimal retirement benefit:

b̃(T ) = b̃(0)β(T ) exp

{
1

γ

(
r +

1

2
(φ2

sr + φ2
lr)

)
T − 1

γ
φlr

∫ T

0

dzlr(u)− 1

γ
φsr

∫ T

0

dzsr(u)

}
(7.9)

Again, we assume that the welfare weights are chosen such that all generations proportional

gain the same proportion in certainty equivalent terms, so we get:

β(T ) =
CE(0, T )

CE(0, 0)
exp

{
−1

γ

[(
r +

1

2

φ2
sr + φ2

lr

γ

)
T

]}
(7.10)

7.4 Welfare effects of risk-sharing with long and short-run risk

We will now illustrate how the potential welfare gain from risk-sharing depends on the source

of risk, being short- or long-run risk. To connect with the previous sections, we will choose the

parameters such that the overall utility gain from optimal risk-taking is unchanged (φ2
lr +φ2

sr =

φ2) as is the overall variance (in the median scenario) of the price of a claim to all future

dividends (σS,sr(0) + σsr = σ). We will vary how much risk and risk-premium is coming from

long-run sources and how much from short run sources by varying a new parameter λ. We will

set:

σS,sr(0) = (1− λ)σ

σlr = λσ

φsr =
√

1− λφ

φlr =
√
λφ

and let λ vary between 0 (only long-run risk) and 1 (only short-run risk). Figure 5 shows the

potential welfare gain from intergenerational risk-sharing as we vary λ. We drew the figure 5
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for κ = 0.05.
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Figure 5. Maximum welfare gain from collective risk-sharing with long- and short-
run risk This figure illustrates the maximum welfare gain the social planner can achieve for
different assumed combinations of long-term and short-term risk. The figure assumes that total
volatility of the stock index is constant and equal to σ (so σlr +σS,sr = σ) and the optimal gain
from risk taking is unchanged (φ2

lr + φ2
sr = φ2). The figure assumes that wealth is at its initial

level, where aggregate human capital is approximately 50% of total wealth and y(0) = 0. The
mean-reversion parameters are set to κ = 0.05 and κsr = 0.25

The two extreme values, λ = 0 and λ = 1, correspond to the two different model

specifications we saw before. In the absence of long-term risk (λ = 0), we find the same

results as in Gollier (2008) and the potential welfare gain is equal to the level we saw in

section 3. The whole risk-premium is related to short-run risk sources that are uncorrelated

with long-term labor income. Hence, the social planner can generate large gains by allowing

future generations to gain access to this short-run risk-premium. When all risk comes from

long-run sources, we are in the world of section 5 and 6. The potential welfare gains are lower

and depend on parameter κ. Schorfheide, Song, and Yaron (2018) present evidence that

suggests the risk-premium is largely compensation for long-run risk.
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8 Conclusion

We show that the potential presence of co-integration between labor income risk and stock

market risk has a significant impact on collective portfolio choice and optimal risk-sharing.

Our findings imply that the commonly held idea that collective pension plans with mandatory

participation can and should take more risk, should be considered a boundary case. For the

empirical parameter range reported by Benzoni et al. (2007), our model actually suggests that

a collective fund should optimally take less stock market risk. This observation is in line with

the findings of Bohn (2009), who also concludes that an efficient policy should probably shift

risk from workers to retirees, instead of the other way around. We furthermore find that the

welfare gains from risk-sharing turn out to be much lower than in the boundary case where

labor income risk is completely uncorrelated with stock market risk.

If we accept the idea that stock market risk and labor income risk are co-integrated, we

highlight that it still matters whether the risk-premium on stock market risk is associated

with its short-run or long-run component. If the risk-premium is associated with the short-

run component, the findings of Gollier (2008) still hold, even in the presence of co-integration.

Schorfheide et al. (2018) present evidence however that suggests that the risk-premium is largely

compensation for long-run risk.

Our results highlight a challenge for policy makers running collective pension plans. Policy

makers will have to decide what the ‘right’ model is and what the ‘right’ parameter values within

that model are. As we showed, these beliefs will have a significant impact on the optimal

portfolio allocation, the optimal distribution of collective risk and wealth and the potential

welfare gains from risk-sharing. Not only does our analysis suggest that the potential welfare

gains from collective risk-sharing are smaller. It also highlights that it is not easy for policy

makers to reap these potential benefits. Picking the wrong model has significant implications

for the optimal policy. Our model is - of course - no exception in this respect. Especially if we

bear in mind that our analysis merely focused on one modeling dimension, albeit an important

one.

In the presence of model risk, one approach is to consider which assumptions or policies are

most robust. We therefore considered the optimal policy from the perspective of a maximin

social planner. Worlds in with high long-run correlations are worse from a welfare perspective
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than worlds with a low long-run correlation. Therefore, the maximin planner prefers to follow a

policy that is designed to do well in the high-correlation scenario. This implies that the planner

would prefer a policy that transfers risk from future generation to current generations instead

of the other way around.
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Appendix A: Derivation of the human capital process

Integrating the log-labor income process 5.6 gives that labor income at time t as a function of

information at time s is :

L(t) = L(s) exp

{
−κ
∫ t

s

y(u)du+ (gd + ¯̀d− 1

2
σ2))(t− s) + (σ − νS)

∫ t

s

dzS(u)

}
(A1)

First, let us also express y(t) as a function of time s information. Since y(t) follows an Ornstein-

Uhlenbeck process, this solution is well known (remember that we have set νL = 0):

y(u) = y(s)e−κ(u−s) − νS
∫ u

s

e−κ(u−v)dzS(v) (A2)

Substituting this into A1 gives:

L(t) = L(s) exp

{
y(s)(e−κ(t−s) − 1) + (gd + ¯̀d− 1

2
σ2))(t− s)

+κνS

∫ t

s

∫ u

s

e−κ(u−v)dzS(v)du

}
(A3)

Which can be simplified into:

L(t) = L(s) exp

{
−κB(t− s)y(s) + (gd + ¯̀d− 1

2
σ2)(t− s)

+κνS

∫ t

s

B(t− v)dzS(v)

}
(A4)

where B(x) = 1
κ
(1− e−κ(x))

Present value of human capital

The present value of labor income is simply the sum of present values of all future labor income

cash-flows. Remember that T denotes the retirement date and n denotes the time the individual

is in the labor force:

H(t, T ) =

∫ T

max[t,T−n]
PVL(y, t, τ)dτ
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where

PVL(y, t, τ) = Et
[
M(τ)

M(t)
L(τ)

]

Substituting the expression for L(τ) and M(τ)
M(t)

given time t in formation in gives:

PVL(y, t, τ) = L(t)Et
[
exp

{
−κB(τ − t)y(u) + h̄ (τ − t)∫ τ

t

(φS + νSκB(τ − v)) dzS(v)

}]

where h̄ = (gd + ¯̀d− 1
2
σ2)−

(
r + 1

2
φ2
S

)
.

Note that the expectation and variance of the term inside the exponential are given by

Et [...] = −κB(τ − t)y(u) + h̄ (τ − t)

V art [...] = Es

[(∫ τ

t

(φS + νSκB(τ − v)) dzS(v)

)2
]

= (φS + νS)2(τ − t)− 2(φS + νS)νSB(τ − t) + ν2S
B(2(τ − t))

2

So, we find that:

PVL(y, t, τ) = L(t) exp {A(τ − t)− κB(τ − t)y(t)} (A5)

where

A(τ − t) =
(
gd + ¯̀d+ νSφS − r

)
(τ − t)− (φS + νS)νSB(τ − t) + ν2S

B(2(τ − t))
4

(A6)

which brings us to 5.8 in the main text.
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Appendix B: Short-run risk extension

First note that D(τ) given time t information can be written as:

D(τ) = Dlr(t) exp

{(
gd −

1

2
σ2
lr

)
(τ − t) + σlr

∫ τ

t

dzlr(s)

}
× exp

{
e−κsr(τ−t) logDsr(t) + σsr

∫ τ

t

e−κsr(τ−s)dzsr(s)

} (B1)

For the pricing kernel at time τ given time t information we have:

M(τ)

M(t)
= exp

{
−
(
r +

1

2
φ2
lr +

1

2
φ2
sr

)
(τ − t) + φlr

∫ τ

t

dzlr + φsr

∫ τ

t

dzsr

}
(B2)

Hence, the present value at time t of the time τ dividend cash-flow is:

PVt(D(τ)) = Et
[
D(τ)

M(τ)

M(t)

]
= Dlr(t) exp {(−r + gd + φlrσlr) (τ − t)}

× exp

{
e−κsr(τ−t) logDsr(t) +

σ2
srBsr(2(τ − t))

4
+ σsrφsrBsr(τ − t)

} (B3)

where Bsr(x) = 1
κsr

(1− e−κsrx).

The price of a claim on the dividend stream is:

S(t) =

∫ τ

t

PVt(D(τ))dτ (B4)

And the return on this claim is:

dS(t)

S(t)
= (...)dt+

dDlr(t)

Dlr(t)
+

∫ τ
t
PVt(D(τ))e−κsr(τ−t)dτ∫ τ

t
PVt(D(τ))dτ

d logDsr(t) (B5)

Which can be re-written as:

dS(t)

S(t)
= (r − σS,sr φsr − σlrφlr) dt+ σS,lrdzlr + σS,srdzsr (B6)

where we should keep in mind that σS,sr depends on the current level of the short-run dividend

component:

σS,sr(Dsr(t)) =

∫ τ
t
PVt(D(τ))e−κsr(τ−t)dτ∫ τ

t
PVt(D(τ))dτ

σsr (B7)
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