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1. Introduction

Illiquid assets increasingly have a role in investors’ portfolios. For instance, they account for

55% of the total portfolios of US endowment funds in 2015 (Dimmock et al., 2019). Moreover,

the seven largest pension funds in the world have increased their average allocations of illiquid

assets from 4% in 1997 to 25% in 2017 (Watson, 2018). One potential reason for investing

in illiquid assets is to capture liquidity premiums (OECD, 2014; Watson, 2019). In other

words, investing in illiquid assets might compensate the investor for bearing liquidity risk.

Yet, there is no consensus in the empirical literature on the question which asset classes have

first-order liquidity premiums. In this study, we ask a related question, namely, how costly

is illiquidity from the perspective of the investor for different origins of asset illiquidity? We

answer this question by computing shadow costs of illiquidity. We define the shadow costs

as the decrease in the expected return on the illiquid asset that a price-taking investor is

willing to pay to convert the illiquid asset into a liquid one.

Studies have either modeled illiquidity as proportional transactions costs, for example,

Constantinides (1986); Vayanos (1998), or as the inability to trade illiquid assets for

random time periods, for example, Ang et al. (2014). We combine these two dimensions of

illiquidity here for two reasons. First, several asset classes exhibit both aspects of illiquidity

simultaneously. For instance, investors in corporate bonds face transaction costs, yet

sometimes specific bonds may not trade for several weeks. Similarly, selling real estate may

take several years, and it obviously carries transaction costs as well. Second, combining

both sources of illiquidity allows us to capture the heterogeneity across asset classes by

adjusting the prominence of both effects.

We solve for shadow costs of illiquidity in a partial equilibrium power utility frame-

work. The investor decides to optimally allocate his wealth to three assets: a risk-less

asset, a liquid risky assets, and an illiquid risky asset. The investor optimizes utility over a

stream of consumption and is exposed to exogenous liquidity shocks. The investor cannot
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borrow against the illiquid asset, which implies that consumption and liquidity shocks must

be financed out of liquid wealth by selling risk-less and/or liquid risky assets. We then

analyze the shadow costs of illiquidity for two different interpretations of the liquidity shock.

The first interpretation models the liquidity shock as a sudden random decline in liquid

wealth, whereas the second one models the liquidity shock as a forced increase in temporary

consumption.

Our model’s flexibility allows us to quantify the magnitude of the shadow costs for

different origins of asset illiquidity and heterogeneous investor types. This flexibility is

important as the costs of illiquidity highly depend on the characteristics of illiquid assets

such as the frequency of trade and potential income returns on illiquid assets, as well as the

characteristics of the investor types that hold these assets.

We show that the cost of illiquidity involves two aspects: suboptimal asset allocation

and suboptimal consumption. If the cost of liquidating the illiquid asset is too high and the

investor prefers not to trade the illiquid asset, or the illiquid asset cannot be traded at all,

then illiquidity leads to suboptimal portfolio allocations. Yet, deviating from the optimal

asset allocation generally only induces small utility costs (Constantinides, 1986). At the

same time, illiquidity may lead to suboptimal consumption levels due to insufficient holdings

of liquid assets, compared to the case where the illiquid asset can always be traded without

costs. That is, if liquid wealth is too low to finance (optimal) consumption and the investor

is unable to sell the illiquid asset or only at high costs, they may face a negative consumption

shock. Shocks to consumption carry a high utility cost which, in turn, generates substantial

shadow costs of illiquidity. Hence, we find that the shadow costs are large for short-term

investors, investors who face substantial liquidity shocks, and investors who desire to allocate

over 60% of their wealth to illiquid assets if the illiquid asset would also be liquid.

We perform back-of-the-envelope calculations to shed light on the shadow costs of

illiquidity for several asset classes. Even though private equity is the most illiquid asset
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that we analyze, we find annual shadow costs in the range of 0-55 basis points only. Private

equity investors have to lockup their money for long periods of time, and mainly for that

reason, only long-term investors are present in this market. For these investors illiquidity is

unlikely to substantially harm consumption patterns. For direct real estate, we find annual

shadow costs in the range of 0-71 basis points. Direct real estate can often not be traded for

a substantial amount of time, the timing of the trading opportunities are uncertain, and the

transaction costs are high. Yet, the threat of illiquidity is dampened because of the liquid

return component (rents) of real estate investments and the typical long investment horizons

for investors in this market. For corporate bonds, the annual shadow cost are in the range of

26-85 basis points. The transaction costs are small, but uncertainty in trading opportunities

and its high price of risk amplify shadow costs. For illiquid stocks, we find annual shadow

costs in the range of 0-108 basis points. Stocks trade very often and therefore the source of

illiquidity is transaction costs. Transaction costs generate small shadow costs for long-term

investors, but substantial ones for short-term investors.

A potential shortcoming of our approach is that we are not able to model investors’

preferences perfectly. However, we make two assumptions that are likely to overestimate

rather than to underestimate shadow costs of illiquidity. First, we assume that the investors

cannot borrow against the illiquid assets. This caveat may be a realistic assumption for some

asset classes, but not in others. For instance, real estate investors are typically able to borrow

a substantial amount using the property as collateral. However, taking this borrowing into

account decreases shadow costs because the investors can partially undo the illiquidity of the

asset. Second, we allow for liquidity shocks as large as 50% of the investors’ total wealth.

Even though larger wealth shocks are in practice possible, our model shows that investors

substantially reduce their risky asset allocation if faced with such shocks also in the fully

liquid case. As a result, large liquidity shocks do not necessarily amplify shadow costs of

illiquidity.

Our study contributes to the theoretical literature on liquidity premiums. The early
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theoretical literature did not find evidence for the existence of sizeable liquidity premiums.

Constantinides (1986) and Vayanos (1998) show that transaction costs only have a second-

order effect on prices, that is, a 1% higher transaction cost increases the liquidity premiums

by only a few basis points per year. After their work, a great deal of literature was developed

that studies illiquidity or transactions costs by using assumptions more in line with real-

world investment problems. This work finds that illiquidity can have first-order effects on

prices. For instance, theoretical work from Huang (2003) and Gârleanu (2009) shows that

first-order effects on prices may arise when investors face borrowing constraints. Jang et al.

(2007) add return predictability to the investor’s problem in a market with transactions

costs and find a slight increase in liquidity premiums. Lynch and Tan (2011) solve a model

that comprises labor income, wealth shocks, return predictability, and transaction costs and

are able to generate liquidity premiums for stocks in the same order of magnitude as the

early empirical literature. We contribute to this literature by (1) combining two aspects of

illiquidity: transactions costs and non-trading periods and (2) setting up a flexible model

that allows to study these dimensions of illiquidity for investors that differ in investment

horizons and liquidity needs.

Our study also contributes to the literature on optimal portfolio choice in the presence

of jump risk (e.g. Liu et al., 2003; Das and Uppal, 2004; Jin and Zhang, 2012; Liu and

Loewenstein, 2013). For instance, Liu et al. (2003) study optimal asset allocations in the

presence of jump risk in prices and volatility. They show that the asset allocation implications

are equivalent to a setting where part of the portfolio is treated as being illiquid as in

Longstaff (2001). The liquidity shock we model is comparable to a type of jump risk and

has similar implications when looking at total wealth only: jump risks or liquidity shocks

imply lower wealth which leads to lower optimal consumption levels. However, in our setting

the liquidity shock can lead to suboptimal consumption levels as compared to the case with

only liquid assets. As we explicitly model liquid and illiquid assets, our constraint that

consumption and liquidity shocks can only be financed out of liquid wealth leads to the
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shadow cost of illiquidity.

Our study also relates to the empirical literature on liquidity premiums. The early

empirical literature found significant effects of illiquidity on stock prices. For instance,

Amihud and Mendelson (1986) and Brennan and Subrahmanyam (1996) show that a 1%

higher transaction cost means a 1.5% to 2% higher expected return for stocks. Yet, some

recent studies have challenged the empirical evidence for liquidity premiums in stocks. For

instance, Ben-Rephael et al. (2015) show that liquidity premiums have become insignificant

in recent decades for public US equities, except for very small stocks. First-order liquidity

premiums also exist for corporate bonds (e.g. Chen et al., 2007; Bao et al., 2011; Bongaerts

et al., 2017). In particular, Bongaerts et al. (2017) find an average (level) liquidity premium

equal to 0.54% for corporate bonds that carry 0.52% transaction costs. Yet, Palhares and

Richardson (2019) find only limited evidence for liquidity premiums for corporate bonds

after using illiquidity-factor portfolios, that is, a strategy that goes long in illiquid bonds

and short in the liquid ones.1

Similarly, for private equity there is no clear consensus regarding the existence of a

liquidity premium, although the evidence is more indirect. Franzoni et al. (2012) report no

out-performance of private equity relative to public equity, while Harris et al. (2014) finds a

substantial out-performance of 3% annually. Finally, opposing indirect evidence also exists

for real estate investments. Qian and Liu (2012) find a somewhat higher expected return for

direct compared to indirect real estate, while Ang et al. (2013) find comparable performance

for direct and indirect real estate investments. Although our model implied shadow costs are

not directly comparable to the empirically estimated liquidity premiums that are the result

of general equilibrium outcomes, our model gives perspective on the order of magnitude of

shadow costs that investors require for the illiquid asset to become liquid in these four asset

classes.

1Note that we refer here to the level of the liquidity premium. There are also studies on the liquidity risk
premium, for example, Pastor and Stambaugh (2003).
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The remainder of the study is organized as follows: Section 2 shows the theoretical

framework of the model and describes the corresponding optimal strategies and the partial

equilibrium implications for the shadow costs. We compute the model implied shadow costs

for a range of different parameter values and provide simple calculations for shadow costs in

several asset classes in Section 3. Section 4 concludes.

2. Shadow costs of illiquidity: theory

In this section, we model illiquidity as the inability to trade an asset frequently and by

the cost that occurs when trading. This is formalized in Section 2.1. In Section 2.2 we

describe the optimization problem of the investor and its solution is presented in Section 2.3.

Section 2.4 describes the numerical solution technique and Section 2.5 shows how we derive

shadow costs of illiquidity.

2.1. Financial market

The financial market consists of three assets: a risk-free asset B, a liquid risky asset S,

and an illiquid risky asset denoted by X. The risk-free asset has a constant annual rate

of return rf and we denote its return over period h by r
(h)
f = rfh. The liquid risky asset

earns a nominal return rSt over the period (t− h, t], while we denote the nominal return on

the illiquid asset over the same period by rXt . All returns are continuously compounded.

Further, we assume that the price of the illiquid asset is observed, even though it cannot be

traded every period.

The prices of risk of the liquid and illiquid assets are denoted by λS and λX , respectively.

Their volatilities are similarly denoted by σS and σX ; their correlation by ρSX . The returns

rSt and rXt are jointly normally distributed:
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 rSt

rXt

 ∼ N

 rf + (λSσS − 1

2
σ2
S)

rf + (λXσX − 1
2
σ2
X)

h,
 σ2

S ρSXσSσX

ρSXσSσX σ2
X

h
 . (1)

The differences between the liquid and the illiquid risky asset are the trading

opportunities and transaction costs. While the investor can always trade the liquid risky

asset S at no cost, the illiquid asset X can only be traded at infrequent points in time and at

a cost. We denote the trading indicator for time t with 1Tt and interpret 1Tt = 1 as a trading

opportunity that arises for illiquid asset X, while 1Tt = 0 indicates that the illiquid asset

cannot be traded that period. We assume throughout that the trading indicators are i.i.d.

Bernoulli random variables. We determine the trading probability by assuming that trading

opportunities arrive according to a Poisson process with intensity η. The probability that

the investor is able to trade in a given period then equals p = P{1Tt = 1} = 1 − exp(−ηh).

If a trading opportunity occurs (1Tt = 1) and the investor decides to trade, then the

proportional transaction costs φ must be paid, 0 ≤ φ ≤ 1. We allow for two types of return

components on the illiquid asset: income return and capital gains. That is, we separate rXt

into a liquid part d (income return) and an illiquid part rXt − d (capital gains).

2.2. The investors’ consumption and investment problem

Preferences are represented by a standard constant relative risk aversion (CRRA) expected

utility function. The investor has an investment horizon equal to T . We assume that the

illiquid asset can be traded (and thus liquidated) against transaction costs φ at the final

date T . Notice that under the assumption that the illiquid asset might not be liquidated

at T , the shadow costs are obviously amplified. We do not consider this because, in that

case, the investor is better off postponing the liquidation of the illiquid asset until a trading

opportunity arises.
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We introduce the following notation to distinguish liquid and illiquid wealth. We denote

liquid wealth as available at time t by Wt. This wealth consists of investments in both the

risk-free asset B and the liquid risky asset S. The value of the investment in the illiquid

asset at time t is denoted by Xt. Therefore, total wealth equals Wt + Xt. We denote the

fraction of liquid wealth Wt that is invested in the liquid risky asset S by θt, and 1 − θt

is invested in the risk-free asset B. Consumption at time t is denoted by Ct and must be

financed from liquid wealth Wt.

Illiquid wealth Xt can only be converted into liquid wealth (and, if desired, immediately

consumed) if a trading opportunity arises, that is, if 1Tt = 1. We denote the transfer from

liquid to illiquid wealth by4Xt. Thus, 4Xt > 0 means that at time t, an additional amount

4Xt of the illiquid asset is bought, and thus liquid wealth Wt decreases by 4Xt +φ4Xt. If

no trading opportunity arises, then 1Tt = 0; and we automatically have 4Xt = 0.

Furthermore, we assume that the investor may face a liquidity shock Lt that is assumed

to be a non-random fraction l of total wealth Wt + Xt that can occur at most once during

the interval (t − h, t], where 0 ≤ l < 1 (the size of the liquidity shock is strictly smaller

than total wealth). We denote the liquidity shock indicator for time t with 1Lt and interpret

1Lt = 1 as the the occurrence of a liquidity shock, while 1Lt = 0 indicates that no liquidity

shock arises that period. We assume throughout that the liquidity shock indicators are i.i.d.

Bernoulli random variables. We determine the liquidity shock probability by assuming that

the liquidity shocks arrive according to a Poisson process with intensity υ. The probability

that the investor faces a liquidity shock in a given period then equals q = P{1Lt = 1} =

1− exp(−υh). If a liquidity shock arises, the investor has to pay the liquidity shock out of

liquid wealth, even though the size of the liquidity shock depends on its total wealth. This

means that the investor cannot avoid the liquidity shock by investing a large fraction of his

wealth in the illiquid asset.

We provide two examples to motivate why we model the liquidity shock as a fraction
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of total wealth, but assume that the liquidity shock has to be financed from the liquid part

of the portfolio. The first example concerns a wealthy private investor that faces a sudden

raise in wealth taxes2. A wealth tax is generally imposed on the total value of all assets

and, hence, on total wealth. Although the (additional) tax amount is a fraction of total

wealth, these taxes have to be financed from the liquid part of the investor’s portfolio. Put

differently, the investor has to pay the taxes with cash, and cannot use illiquid assets to pay

the tax invoice. The investor must use his liquid wealth by either selling the risk-less asset

B or the liquid risky asset S. Only if a trading opportunity in the illiquid assets arises at

exactly the same time this wealth tax is due, the investor is also able to sell the illiquid asset

and use the proceeds to pay the tax invoice. The lower the trading probability of the illiquid

asset, the lower the likelihood that the investor is able to use illiquid wealth to pay the tax

invoice.

The second example concerns an institutional investor facing margin calls, resulting

from the use of derivatives3. For instance, pension funds can (partly) hedge their interest

rate risk that results from the long-term nature of the pension liabilities. Typically, pension

funds define their interest rate hedge as a fraction of the total liabilities which is thus related

to total assets. Suppose a pension fund desires to hedge 50% of its interest rate risk, then

the total notional to achieve this hedge is higher when the fund has more (total) liabilities.

Because pension funds are typically net receiver swap holders, an increase in interest rates

may result in margin calls. That is, the pension fund has to post cash (or highly liquid

assets) on a margin account. The larger the notional amount of the receiver swap, the larger

2For instance, in 2001, the wealth tax in the Netherlands went up from 0.7 to 1.2
percentage points: https://www.cpb.nl/sites/default/files/publicaties/download/

cpb-discussion-paper-273-saving-behavior-and-risk-taking.pdf.
3The importance of margin requirements has substantially increased over the past decade. In response to

the aftermath of the financial crisis, the European Union agreed on a new legislative framework to mitigate
systemic risk for over-the-counter derivatives in 2012, the European Market Infrastructure Regulation
(EMIR). The EMIR legislation is relevant in the context of illiquid assets, as EMIR requires central clearing
of derivative contracts. Central clearing implies that each counterparty of an OTC derivative contract should
post an initial margin at the clearing house on entry of the contract, and a variation margin when the value
of the derivative contract changes (https://www.bis.org/bcbs/publ/d317.pdf).
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the amount of cash that is needed to finance the margin. Thus, margin calls occur as a

fraction of the pension fund’s total assets, but they can be financed out of liquid wealth

only. Again, the investor would have to either sell the risk-less asset B or the liquid risky

asset S. Only if a trading opportunity in the illiquid asset occurs at the time of the margin

call, the pension fund is able to sell the illiquid asset as well and use the proceeds to finance

the margin. The exact same mechanism holds for other types of derivatives (e.g., currency

and credit derivatives).

Furthermore, we consider two different interpretations for the liquidity shock. First,

the interpretation of the liquidity shock as a sudden random decrease in liquid wealth, that

is, the investor does not receive utility from the liquidity shock. For retail investors, one

example is again a raise in wealth taxes or another example could be extreme weather

events. For institutional investors, a possible random shock to liquid wealth are margin calls

on derivative positions as just described. Second, the liquidity shock can be interpreted as

a forced increase in temporary consumption and hence in utility. Examples include some

health care costs and unforeseen expenditures for retail investors. For long-term investors

such as pension funds, mortality shocks can be interpreted as temporary increases in utility,

assuming that utility is measured by lifetime consumption. In these examples, the investor

faces a temporary increase in consumption of which it benefits during the period these costs

materialize. Our baseline model assumes the first interpretation, but we also study the

implications of the alternative setting in Section 3.6.

We now turn to the optimization problem of the investor. The investor optimizes its

utility of a stream of consumption levels Ct over a horizon t = 0, h, 2h, . . . , T . Thus, the

criterion function is:

E0

 ∑
t∈{0,h,2h,...,T}

βt
C1−γ
t

1− γ

 , (2)

where β denotes the time-preference discount factor and γ > 1 is the risk-aversion parameter.

The investor faces two budget constraints: one for liquid wealth Wt and one for illiquid
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wealth Xt. Formally, we have:

Wt = (Wt−h −4Xt−h − φ|4Xt−h| − Ct−h − Lt−h)
(

exp(r
(h)
f ) + θt−h

[
exp(rSt )− exp(r

(h)
f )
])

+ (Xt−h +4Xt−h) exp(d) (3)

Xt = (Xt−h +4Xt−h)
(
exp(rXt )− exp(d)

)
. (4)

We assume that the investor cannot borrow against the illiquid asset. The effect of

illiquidity would be strongly reduced if this borrowing was possible, as the investor could

always undo the illiquidity by borrowing against the illiquid asset if needed. Thus, we impose:

Ct ≤ Wt − Lt, t = 0, h, 2h, . . . , T. (5)

The borrowing constraint implies that the investor can only finance consumption out of

liquid wealth, after liquidity shocks. This means that consumption can only be generated

from selling the risk-less bond B and/or selling the liquid risky stock S. Only if a trading

opportunity arises for the illiquid asset when the investor desires to consume, the investor

can also use the illiquid asset to finance consumption at exactly the same moment in time.

Hence, illiquidity impacts the investor because he may not be able to attain the desired

consumption level due to insufficient holdings of liquid assets. Furthermore, the borrowing

constraint implies that the investor’s liquid wealth will always be larger than the liquidity

shock Lt, i.e., Wt > Lt for all t, as zero consumption leads to negative infinite utility in (2).

In other words, if the investor locks up a substantial amount of its wealth in the illiquid

asset and a liquidity shock occurs, the investor faces the risk of not having sufficient liquid

wealth left to consume, a scenario the investor avoids at all times.

The optimal consumption problem can now be stated as follows:
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Problem 2.1. The investor maximizes

max
{θt,4Xt,Ct}Tt=0

E0

 ∑
t∈{0,h,2h,...,T}

βt
C1−γ
t

1− γ

 (6)

subject to the budget constraints (3) and (4) and the borrowing constraint (5). Moreover,

when 1Tt = 0, we must have 4Xt = 0.

The decision variables Ct, θt, and 4Xt are non-anticipative. Formally, {Ct, θt,4Xt}

is adapted to the filtration F = {Ft}Tt=1, where Ft is the natural filtration generated by

{rSt , rXt ,1Tt ,1Lt }.

In the setting where we assume that the liquidity shock results in a utility gain, the

optimization problem of the investor becomes as follows.

Problem 2.2. The investor maximizes

max
{Ct,θt,4Xt}Tt=0

E0

 ∑
t∈{0,h,2h,...,T}

βt
(Ct + Lt)

1−γ

1− γ

 (7)

subject to the budget constraints (3) and (4) and the borrowing constraint (5). Moreover,

when 1Tt = 0, we must have 4Xt = 0.

To summarize, illiquidity limits the investor’s consumption and investment decisions in

three ways compared to the case where the illiquid asset is fully liquid, that is, the two risky

asset Merton case (Merton, 1969): the inability to trade the illiquid assets for uncertain

periods of time; transaction costs of the illiquid asset when a trading opportunity arises; and

the investor cannot borrow against the illiquid assets. All three assumptions are important

characteristics of (most) illiquid assets.
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2.3. Optimal strategies

The optimization in Problem 2.1 cannot be solved analytically, so we resort to numerical

methods. For these problems, the numerical complexity is well-known to strongly increase

with the number of endogenous state variables. In the formulation of Problem 2.1 there are

two: Wt and Xt. Yet, in line with Ang et al. (2014), a simple transformation leads to a

partly analytical result due to the homogeneity of the CRRA utility function we consider,

see Theorem 2.3 below.

More precisely, we consider as endogenous state variables the total wealth Wt +Xt and

the fraction of total wealth invested in the illiquid asset, that is,

ξt =
Xt

Wt +Xt

. (8)

With this reparametrization, we define the value function using the Bellman principle

as:

Vt (Wt +Xt, ξt) = max
Ct,θt,ξt

βt
C1−γ
t

1− γ
+ EtVt+h(Wt+h +Xt+h, ξt+h), (9)

with the boundary condition at time T given by:

VT (WT +XT , ξT ) = βT
(WT + (1− φ)XT )1−γ

1− γ
. (10)

The boundary condition means that we assume that all assets can be traded (and thus

liquidated) at time T against transaction costs φ. Moreover, the optimal investment decision

concerning illiquid wealth, that is, 4X∗t , is determined by the choice ξ∗t :

4X∗t =


(ξ∗t − ξt)(Wt +Xt) if 1Tt = 1

0 if 1Tt = 0.

(11)
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With the above introduced change of variables, that is, the pair (Wt, Xt) is replaced by

the pair (Wt +Xt, ξt), the solution to the investor’s problem satisfies the following theorem.

A proof is provided in Appendix A.

Theorem 2.3. There are time-dependent (deterministic) functions αt, θt, and Ht such that

the optimal solution {C∗t , θ∗t , ξ∗t } to Problem 2.1 can be written as:

Vt (Wt +Xt, ξt) = βt
(Wt +Xt)

1−γ

1− γ
Ht (ξt) , (12)

C∗t = αt(ξt) (Wt +Xt) , (13)

θ∗t = θt (ξt) , (14)

ξ∗t = arg min
ξt

Ht(ξt). (15)

The function Ht(ξt) can be viewed as a penalty function which is minimized at the

optimal fraction of total wealth invested in the illiquid asset ξ∗t . If the investor is able to

trade the illiquid asset at time t, then they will rebalance their portfolio towards the optimal

ratio of illiquid wealth to total wealth ξ∗t , if the decrease in the penalty function is sufficient

to outweigh the transaction cost φ. Thus, in line with Constantinides (1986), there is a

no-trading region where the investor will not rebalance their portfolio.

Theorem 2.3 furthermore indicates that the optimal consumption choice and the optimal

investment strategy in the liquid risky asset depend on the fraction of total wealth invested

in the illiquid asset ξt. As we show in Section 3.2, if illiquid wealth is substantial relative

to liquid wealth, for instance after a liquidity shock Lt occurs; then the investor might have

to cut their consumption relative to the case where the illiquid asset can always be traded.

Moreover, to compensate for the increased risk exposure that results from the high fraction

invested in illiquid wealth, the investor reduces their allocation to the liquid risky asset.
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2.4. Solving the model

The model is solved by means of backward induction, where we start solving the problem

at the final date t = T and solve the model backwards for each period until arriving at time

t = 0. The advantage of Theorem 2.3 is that the dependence of the value function on total

wealth Wt + Xt is known analytically. The fact that the value function is proportional to

(Wt +Xt)
1−γ simplifies the numerical optimization to a one dimensional grid search over ξt

only. Details on how we solve the model are provided in Appendix B.

2.5. Willingness to pay for liquidity

To understand why illiquidity is costly in some cases but not in others, we analyze the

willingness to pay for liquidity. We define the investor’s willingness to pay δt as the decrease

in the expected return on the illiquid asset over period (t− h, t] that they are willing to pay

to convert the illiquid asset into a liquid one. In other words, δt can be interpreted as a

shadow cost and is the compensation the investor demands for holding the illiquid asset. To

formalize the willingness to pay, denote the value function for Problem 2.1 by assuming that

the asset X is actually also liquid by V LIQ
t (Wt +Xt). In other words, we solve Problem 2.1

subject to the budget constraints (3) and (4), where η → ∞, φ = 0. This value function

factorizes as:

V LIQ
t (Wt +Xt) = βt

(Wt +Xt)
1−γ

1− γ
HLIQ
t , (16)

for a deterministic constant HLIQ
t , where HLIQ

t no longer depends on ξt as the illiquid asset

is tradeable as well.

The value function V LIQ
t depends on the expected return (rf +λXσX−0.5σ2

X)h of asset

X. Subtracting δt from this expected return leads to a (lower) value function that we denote
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by V LIQ
t (Wt +Xt|δt). We then define the willingness to pay as that value of δt that solves:

V LIQ
t (Wt +Xt|δt) = Vt (Wt +Xt, ξt) . (17)

Given (12) and (16), we can find δt by solving:

HLIQ
t (δt) = Ht(ξt), (18)

where HLIQ
t (δt) denotes the penalty function when the illiquid asset is actually liquid at

a risk premium reduced by δt. This willingness to pay or shadow cost depends on the

actual allocation to the illiquid asset: ξt. To determine the shadow cost, we assume that an

investor with horizon T chooses the optimal allocation to the illiquid asset when entering

the investment, so the actual allocation at time t = 0 equals ξTt=0 = ξT,∗t=0.

3. Shadow costs of illiquidity: comparative statics

We now turn to the qualitative and quantitative implications of the model. First, we show

how illiquidity affects the asset allocation and consumption patterns of the investor. We then

compute the shadow costs of illiquidity depending on different parameter configurations. We

end the section by computing model implied shadow costs for different asset classes. For

ease of interpretation, all the shadow costs are annualized in the subsequent sections.

3.1. Parameter values baseline model

With respect to the investor’s preferences we assume the investor faces a liquidity shock with

intensity υ = 10%, which implies the liquidity shock occurs on average once in 10 years and

the probability of a shock each month equals q = 0.83%. The magnitude of the liquidity

shock is equal to l = 30% of total wealth (i.e., liquid and illiquid wealth combined). The

investor has a risk-aversion parameter equal to γ = 5 and the time-preference discount factor

17



equals β = 0.91.4 We assume that the investor can consume and trade each month and hence

h = 1/12.

With respect to the financial market, we assume the liquid asset has a price of risk

λS = 38% and volatility σS = 18.5%, and the risk-free rate is rf = 2%. These parameter

values result in an optimal risky asset allocation of approximately 40% and a risk-free bond

allocation of 60%. The parameter values of the illiquid asset are set equal to the parameter

values of the liquid risky asset: λX = 38% and σX = 18.5%. In this way, we isolate the

effect of illiquidity instead of relying on a higher Sharpe ratio for the illiquid asset. In line

with this reasoning, we also assume no correlation between the liquid and illiquid risky

assets in the baseline model; ρSX = 0. We also assume no income return for the illiquid

assets, that is, dt = 0. For the illiquidity parameters, we assume that the investor can trade

the illiquid asset on average once in two years, or in other words trading opportunities occur

with intensity η = 50%, which implies a trading probability each month equal to p = 4.08%.

If the investor decides to trade the illiquid asset when a trading opportunity arises, then

the proportional transactions costs equal φ = 1%. At the final date, the investor has to

pay transaction costs φ = 1% in all states of the world. Table 1 summarizes the parameter

values for the baseline model.

[Place Table 1 about here]

3.2. Optimal consumption and asset allocation baseline model

We now describe the optimal consumption pattern and asset allocation decisions for the

baseline model described in Section 2. Both consumption and the allocation to the liquid

risky assets are functions of the investment horizon and the fraction invested in the illiquid

asset, as derived in Theorem 2.3.

4A lower value for the time-preference discount factor has a negligible effect on shadow costs.
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Figure 1 shows that the optimal consumption decreases as a function of time and the

fraction of wealth invested in the illiquid asset. To smooth consumption over time, the shorter

the investment horizon, the larger the fraction the investor optimally desire to consume out of

his total wealth. Moreover, the larger the fraction of illiquid wealth relative to total wealth,

the less room for the investor to consume, because of the constraint that consumption and

liquidity shocks can only be financed out of liquid wealth.

The allocation to the liquid risky asset (after consumption) is stable over time, because

investment opportunities are constant.5 However, Figure 2 shows that the liquid risky asset

allocation is decreasing as a function of the allocation to illiquid wealth. If the fraction

allocated to illiquid wealth is high, the investor reduces its total exposure to market risk

by investing less in the liquid risky asset. When the fraction invested in illiquid wealth

gets closer to one, zero liquid wealth might be left after consumption and potential liquidity

shocks, and hence the allocation to the liquid risky asset turns zero as well.

The optimal allocation to the illiquid asset (after consumption) is in Figure 3 and

found by minimizing the penalty function Ht(ξt), as shown in Theorem 2.3. We compare

this allocation to the case where the illiquid asset is fully liquid, that is, the two risky asset

Merton case (Merton, 1969). Generally, the shorter the investment horizon, the lower the

optimal allocation to the illiquid asset relative to the Merton case. The kink in the illiquid

asset allocation for horizons between four to twelve months results from the way we model

the final date. At horizons of four to six months, the investor knows for sure he is able to

liquidate illiquid wealth at the final date, with a very small probability of facing liquidity

shocks. Even though he has to pay transaction costs to liquidate illiquid wealth at the

final date, the period is sufficiently long to earn investment returns that outweigh these

transaction costs in expectation. On the other hand, at horizons between seven and twelve

months, the risk of facing liquidity shocks before the final date increases, resulting in a

5Because we simulate the returns each month, the optimal allocation to the liquid risky asset varies
slightly from month to month.
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lower allocation to the illiquid asset.

[Place Figure 1-3 about here]

The no-trading region induced by transaction costs is in Figure 4. The solid line

represents the optimal allocation to the illiquid assets given transaction costs φ, and the

dashed lines represent the boundaries of the no-trading region. As long as the illiquid asset

allocation is within the no-trading region, that is, the area within the two dashed lines, the

investor does not trade if a trading opportunity arises, while the investor re-balances back to

the optimal allocation when outside of the no-trading region. Compared to Constantinides

(1986), the upper bound of the no-trading region is lower in our model; an over-investment

in the illiquid asset relative to the optimal amount may prevent the investor from smoothing

consumption due to the borrowing constraints and/or potential liquidity shocks. In order to

avoid these states of the world, they re-balance back to the optimal illiquid asset allocation

more quickly as opposed to under-investment in the illiquid asset.

[Place Figure 4 about here]

In the next subsections, we convert the suboptimal consumption and asset allocation

patterns resulting from illiquidity to implications for shadow costs of holding illiquid assets.

3.3. Shadow costs and the investment horizon

Perhaps the most straightforward, but nevertheless important result, is that the willingness

to pay depends on the investment horizon. Figure 5 shows that the shorter the investor’s

investment horizon amplifies the shadow cost. Illiquidity is typically a bigger threat for

short-term investors as they want to consume or payout a large part of their total wealth

compared to long-term investors. Under the baseline parameters, the shadow cost demanded
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by an investor with a horizon equal to a month equals 490 basis points, while this cost

converges to only a few basis points as the horizon T becomes large. The steep decline in

shadow costs at the one to three months horizons results from transaction costs: At the

one and two months investment horizons, the expected excess return on the illiquid asset is

below the 1% transaction costs, making the illiquid asset unattractive. On the other hand,

for an investor with a horizon equal to three months, the expected excess return exceeds

the transaction costs.

[Place Figure 5 about here]

3.4. Shadow costs and trading opportunities

Higher trading opportunities decrease the willingness to pay for illiquidity. Figure 6 shows

that for the short-term investor (T = 1 year) the shadow cost equals 60 basis points if the

investor is unable to trade the illiquid asset before the final date and decreases to 31 basis

points when the probability to trade each month is high. For long-term investors (T = 10

years), the shadow cost equals 20 basis points if the investor is unable to trade the illiquid

asset before the final date and converges to zero if the probability to trade each month is

high. The relation between the trading probability and the shadow cost is approximately

linear for the short-term investor but decreases exponentially for the long-term investor.

The short-term investor knows for sure that they are able to trade in twelve months from

now on, so the trading probability only affects trading opportunities in the upcoming eleven

months. However, the inability to trade lengthens with a lower trading probability for the

long-term investor. As a result, the probability of scenarios where illiquid wealth grows

too fast relative to liquid wealth increases more rapidly at low trading probabilities for the

long-term investor compared to the short-term investor.
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[Place Figure 6 about here]

3.5. Shadow costs and transaction costs

Figure 7 shows that rising transaction costs increase the willingness to pay for both

short-term (T = 1 year) and long-term (T = 10 year) investors. Nevertheless, the increase

is more substantial for the short-term investor, such that a 1 percentage point increase in

transaction costs increases the shadow cost demanded by approximately 10 basis points.

Short-term investors always liquidate their illiquid wealth twelve months from now, and

they can only do so at cost φ. Long-term investors only liquidate their illiquid wealth

at proportional cost φ if the realized illiquid asset allocation deviates too much from

the optimal level. As a result, the shadow cost increases by only 1-2 basis points when

transaction costs increase by 1 percentage point. This increase confirms earlier results

from Constantinides (1986), where the investor has an infinite horizon and transactions

costs endogenously decrease their trading frequency in the illiquid asset. The larger the

transaction costs, the larger the investor’s no-trading region. As the investor’s value

function is fairly insensitive to small deviations from the optimal (non-transaction) portfolio

allocation, the transaction costs lead to second-order effects on shadow costs.

[Place Figure 7 about here]

3.6. Shadow costs and liquidity shocks

Figure 8 shows that the shadow cost is hump-shaped in the level of the liquidity shock.

This hump-shaped relation means that the shadow cost is amplified when the level of the

liquidity shock increases up to a shock of l = 50% for the short-term investors and l = 60%

for the long-term investors, but decreases again for larger shocks. Because a liquidity shock

22



can only be financed out of liquid wealth, a shock increases the probability that liquid

wealth becomes insufficient to fulfill consumption needs. In order to prevent these states of

the world, the investor reduces their optimal allocation to the illiquid asset substantially as

compared to the liquid case and shadow costs increase. However, when the liquidity shock

gets too severe, the allocation to the illiquid asset if it were fully liquid also gets closer to

zero. Such large liquidity shocks make risky assets unattractive also in the fully liquid case,

and as a result, shadow costs drop.

[Place Figure 8 about here]

For the baseline parameter values, Figure 9 shows that the shadow costs are slightly

lower when we model the liquidity shock as a temporary increase in consumption

(Problem 2.2). To remain able to smooth consumption, the optimal consumption level

decreases if the liquidity shock results in a temporary increase in consumption (Table 2,

Panel A). Hence, the budget constraint for liquid wealth, Equation 3, becomes less stringent

and shadow costs drop.

This effect becomes more apparent if we increase the occurrence of the liquidity

shock compared to the baseline where the liquidity shock occurs only once in ten years.

A high probability of facing liquidity shocks reduces shadow costs in general, because

consumption decreases more substantially also if the illiquid asset is fully liquid and the

budget constraint for liquid wealth becomes less binding. As a result, both the dashed red

and the dotted-dashed purple line that represent a monthly liquidity shock probability of

q = 90% are below the lines of the cases where the liquidity shock occurs with probability

q = 0.83%. Yet, if the liquidity shock occurs frequently, the optimal consumption level

decreases more substantially to ensure consumption smoothing over time in case the

liquidity shocks increase temporary consumption, reducing the shadow costs (Table 2, Panel
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B).6 If the liquidity shock occurs with probability q = 90% each month, the shadow costs

equal 38 basis points for the interpretation of the liquidity shock as a sudden decrease in

liquid wealth for the investor with a one-year horizon, but reduce to 16 basis points when

the liquidity shock increases temporary consumption.

[Place Table 2 about here]

[Place Figure 9 about here]

3.7. Shadow costs and income return

Figure 10 shows that the shadow costs are decreasing in the level of income return, although

the magnitude of the effects are relatively small. For the short-term investor (T = 1 year),

returns on the illiquid asset that consist of capital gains only result in shadow costs equal

to 61 basis points, and this cost decreases to 41 basis points if the return on the illiquid

asset is fully paid as income. For the long-term investor, the shadow cost of illiquidity

without income return equals 12 basis points, and this decreases to 5 basis points if the

return consists fully of income. For the levels of income return we consider, its effect on

reducing the shadow costs are limited, because the income return is a fairly small fraction

of the total return on liquid and illiquid assets combined.

[Place Figure 10 about here]

3.8. Shadow costs and price of risk

Figure 11 shows that a higher price of risk for the illiquid asset strongly amplifies shadow

costs. A higher price of risk increases the illiquid asset’s attractiveness so that the optimal

6For a high probability of facing liquidity shocks, consumption turns on average negative if the liquidity
shock increases temporary consumption, however, Lt + Ct remains positive and the objective function in
Equation 2.2 is identified.
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fraction of wealth allocated to it increases in case the illiquid asset becomes fully liquid.

The higher the fraction of total wealth that the investor optimally wants to invest in the

illiquid asset, the stronger the threat of illiquidity. Because the investor cannot borrow

against the illiquid asset and to remain able to smooth consumption, the gap between the

optimal allocation to the illiquid asset compared to when it is fully liquid widens as the

illiquid asset becomes more attractive. These findings are consistent with Kahl et al. (2003)

and Longstaff (2009) who show that the welfare effects of illiquidity are much larger when

more wealth is tied up in the illiquid asset. For ease of interpretation, we show the shadow

costs as a function of the expected return as the driver of the price of risk. However, we

obtain similar results if we adjust the standard deviation. A lower standard deviation

increases the optimal allocation to the illiquid asset if its also liquid and hence shadow

costs are amplified. Similarly, a low correlation between the illiquid and the liquid risky

asset increases the optimal allocation to the illiquid asset, leading to higher shadow costs of

illiquidity.

[Place Figure 11 about here]

3.9. Shadow costs in four asset classes

The previous subsections show that the shadow costs are high for short-term investors,

investors who face substantial liquidity shocks, and investors who desire to allocate a large

fraction of their wealth to illiquid assets. Next, to provide perspective on the quantitative

and qualitative implications of the model, we compute rough estimates of the shadow costs

of illiquidity in different asset classes. The asset classes we consider are: private equity,

real estate, corporate bonds, and stocks. To quantify shadow costs of illiquidity in each

asset class, we use parameter values that we feel are representative for the asset class in

consideration. We provide these as stylized examples to illustrate the effect of illiquidity in
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different markets.

Throughout, we assume that the liquid risky asset S represents a liquid stock index.

We use the annualized mean and the standard deviation of the S&P500 Index to model

the diversified liquid stock index. Calibrated over the last 25 years, the average return is

µS = 11.3% and the standard deviation σS = 17.8%. Moreover, we use as the risk-free rate

the annualized 1-year Treasury yield over the last 25 years that gives us rf = 2.8%.

The preferences of investors in each market are less well-known, as researchers only

have a very rough idea about investors’ investment horizons and their liquidity needs that

are usually represented as holdings periods (e.g. Atkins and Dyl, 1997) or investors’ funding

constraints (e.g. Chen et al., 2020). These measures are generally incomplete as these proxies

do not measure other liquidity risks such as margin calls on derivative positions or rare

disasters that investors potentially face. For this reason, we provide qualitative indicators

of investors’ preferences for each asset class.

Despite this drawback, we argue that our findings can be interpreted as upper bounds

on the shadow costs of illiquidity in each of the asset classes. We make two assumptions

that are more likely to overestimate rather than to underestimate the shadow costs. First,

we assume that the investors cannot borrow against the illiquid assets. This constraint may

be a realistic assumption for some asset classes but not for others. For instance, real estate

investors are typically able to borrow a substantial amount using the property as collateral.

However, taking this borrowing into account decreases shadow costs because the investors

can partially undo the illiquidity of the asset. Second, we allow for liquidity shocks as large

as 50% of the investors’ total wealth. Even though larger wealth shocks are in practice

possible, our model shows that investors substantially reduce their risky asset allocation if

faced with such shocks also in the fully liquid case. As a result, large liquidity shocks do not

necessarily have a positive effect on shadow costs (Figure 8).

Private equity To assess the shadow costs for private equity, we use the mean and
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standard deviation of the S&P500 Index to model the liquid counterpart of the illiquid private

equity investment in our model, as the S&P500 Index is generally taken as the benchmark

for private equity, see, for example, Franzoni et al. (2012) and Harris et al. (2014). This

benchmark means that µX = 11.3% and σX = 17.8%. We do not take a stance on the

correlation between private equity and the S&P500 Index. The performance of private

equity varies substantially across investments, as noted by Phalippou and Gottschalg (2009)

for example, and as a result the correlation coefficient varies across the specifications as well.

We therefore analyze the results for the correlation coefficients of ρSX = 0.25 (baseline) and

ρSX = 0.60.

Private equity contracts generally run for 10 years, and trading is unusual before a

contract expires (Metrick and Yasuda, 2010). Therefore, we set η = p = 0 over the first 10

years of the investment horizon.7 We furthermore assume that the transaction cost at exiting

the contract is φ = 1%. A study by Dechert and Preqin (2011) shows that transaction fees

at completion of a private equity contract vary between 0.84%-1.25% depending on the size

of the investment.

Turning to investors’ preferences in the private equity market, we posit that they likely

have a low demand for liquidity, as the lock-up period of private equity is long and known

beforehand. Indeed, Harris et al. (2014) report that for the Burgiss database that covers

$1 trillion of committed capital to private equity over 20% is held by endowment funds and

60% by pension funds. Hence, we analyse the shadow costs for horizons equal to T = 10

(baseline) and T = 15. Finally, we assess the shadow cost for long-term investors who face

different liquidity shocks. Across these specifications, Table 3 (Panel A) shows that the

shadow costs for private equity vary between 0-55 basis points.

Real Estate To model a direct investment in real estate, we use the first two moments

of the S&P US REIT Index to model the liquid counterpart of a direct real estate investment:

7Another distinct feature of private equity is that they usually involve capital commitment agreements.
The investor agrees to provide a preset amount of capital over the first three to five years of the project.
Yet, the capital commitment is preset, so we treat it as an upfront investment in our model.
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µX = 12.22% and σX = 18.31%. The correlation coefficient between the liquid and illiquid

asset is calibrated as the correlation between the S&P500 Index and S&P US REIT Index,

which equals ρSX = 0.4.

The return on real estate includes both the income return and capital gains. The

income return refers to the rent on properties, so the real estate returns are partially liquid.

Following Hardin III et al. (2002) we assume that the income return or rent payments explain

the majority of the total investment returns for REITs. In the model, we therefore set the

income return equal to d = µX−rf . The volatility is instead largely defined by the volatility

in the capital gains, and we therefore assume that the volatility relates to volatility in capital

gains only.

To describe the illiquidity parameters for real estate, we set transaction costs equal to

φ = 6%, in line with estimates by Ommeren (2008). The typical time between transactions

for residential housing is 4-5 years and 8-11 years for institutional real estate, see, for example,

Hansen (1998) and Miller et al. (2011). We thus assume trading intensities η in the range

of 10% and 20% (baseline), which equals a monthly trading probability of p = 0.83% or

p = 1.65%. We are not aware of public holdings data on real estate. However, pension

funds are large investors in real estate markets worldwide (Watson, 2018). We therefore

conjecture that the majority of investors are either medium term (T = 5) or long term

(T = 10, baseline). Across these specifications, we find that shadow costs are in the range

of 0-71 basis points (Table 3, Panel B).

Corporate bonds We use the first two moments of the Bloomberg Barclays US

Corporate Bond Index to model the liquid counterpart of corporate bonds: µX = 7.0% and

σX = 6.6%. We calibrate the correlation coefficient as the correlation between the Bloomberg

Barclays US Corporate Bond Index and the S&P500 Index, which equals ρSX = 0.35. Finally,

we assume fixed coupon payments, and as for real estate, we assume that the income return

equals d = µX − rf .
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Turning to the illiquidity parameters, we set transaction costs equal to φ = 0.46%

(baseline) and φ = 0.58% (Bongaerts et al., 2017). We translate the periods between trades

found in Bao et al. (2011) and Bongaerts et al. (2017) to monthly trading probabilities that

equal p = 90%, that means trades occur on average slightly less than once a month.8

The Financial Accounts of the United States (Fed, 2020) reports the holdings of several

asset classes within the US by investor type. We define long-term investors as the insurance

companies, pension funds, and the government. The short-term investors are the banks,

broker-dealers, households, and mutual funds. The Fed (2020) reports that for 2019, 38%

of corporate bonds were held by long-term investors, and 34% by short-term investors. The

remaining 28% of the holdings are unspecified. We therefore analyze the shadow costs for

investors with horizons equal to T = 1 year and T = 10 years (baseline). Across these

specifications, we find shadow costs in the range of 26-85 basis points for corporate bonds

(Table 3, Panel C).

Stocks For our model we again use the first two moments of the S&P500 Index to

model the liquid counterpart of the illiquid stock, so µX = 11.3% and σX = 17.8%. Equity

asset classes, such as small-growth stocks, are highly correlated with the US stock market, so

we set ρSX = 0.8. Given the improved liquidity of US equities, we assume that the monthly

trading probability equals p = 100%. The transaction costs for stocks range from 0.25% for

the most liquid stocks to 8% for the least liquid stocks (Beber et al., 2020). We therefore

assess the shadow cost for transaction costs equal to 4% (baseline) and 8%.

The Fed (2020) reports that for 2019, 13% of US corporate equity is held by long-term

investors, and 70% by short-term investors. The remaining 17% of the holdings are

unspecified. We therefore again assess shadow costs for investment horizons T = 1 year

(baseline) and T = 10 years. Across these specifications, Table 3 (Panel D) shows shadow

costs in the range of 0-108 basis points for illiquid stocks.

8For instance, Bao et al. (2011) show an annualized turnover of corporate bonds that varies between
25%-35% and Bongaerts et al. (2017) show that 15% to 25% of corporate bonds are not traded in a given
week.
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[Place Table 3 about here]

4. Conclusion

In this study, we solve a flexible model that captures transactions costs and infrequencies

of trading opportunities for illiquid assets to achieve better understanding of the shadow

costs of illiquidity. The cost of illiquidity may be twofold: suboptimal asset allocation

and suboptimal consumption smoothing. We show that only the illiquidity that results

in suboptimal consumption smoothing is able to generate substantial shadow costs, while

the illiquidity that leads to suboptimal asset allocations does not. Hence, we find that the

shadow costs are larger for short-term investors, investors who face substantial liquidity

shocks, and investors who desire to allocate a large fraction of their wealth to illiquid assets

if the same illiquid asset would otherwise be liquid. Looking at separate asset classes, back-

of-the-envelope calculations suggest low average shadow costs for private equity and direct

real estate, but these costs can become substantial for illiquid stocks and corporate bonds.
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Table 1. Parameter values
This table summarizes the parameter values of our baseline model.

Parameters Symbol Value
Trading frequency risky assets h 1/12
Liquidity shock l 30%
Intensity liquidity shock υ 10%
Risk aversion parameter γ 5
Time-preference discount factor β 0.91
Risk-free rate rf 2%
Price of risk liquid risky asset λS 38%
Volatility liquid risky asset σS 18.5%
Price of risk illiquid asset λX 38%
Volatility illiquid asset σX 18.5%
Correlation coefficient ρ 0
Income return d 0
Intensity trading opportunity illiquid asset η 50%
Transaction costs illiquid asset φ 1%
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Table 2. Optimal strategies two interpretations for the liquidity shock
This table shows the optimal allocation to the illiquid asset and the corresponding optimal
consumption level for the baseline specification and when the liquidity shock is modeled
as a temporary increase in consumption, for an investor with horizon T (in months). We
show the results for monthly liquidity shock probabilities of q = 0.83% and q = 90%. We
use the following parameter values: the risk-aversion parameter γ = 5, the time-preference
discount factor β = 0.91, a liquidity shock l = 30%, the return on the risk-free rate rf = 2%,
the average return on the liquid and illiquid risky asset µS = µX = 9%, the volatility of
the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the
income return d = 0, the trading intensity of the illiquid asset η = 50%, and the transactions
costs φ = 1%. The optimal consumption level is determined when the investor can trade
the illiquid asset and as a result, it does not depend on the endogenous state variable ξt. All
values are in percentage points.

Panel A: monthly liquidity shock probability q = 0.83%

Baseline Increase consumption Lt
T ξ∗t α∗t ξ∗t α∗t diff. α∗t
1 5.75 47.74 5.80 47.69 -0.05
2 17.22 32.32 18.18 32.21 -0.12
3 21.15 24.34 23.76 24.24 -0.09
4 22.36 19.51 28.53 19.38 -0.12
5 27.48 16.29 27.44 16.17 -0.12
6 26.73 13.96 26.69 13.83 -0.14
7 26.20 12.22 26.16 12.09 -0.13
8 25.81 10.87 25.77 10.74 -0.13
9 25.49 9.78 25.46 9.66 -0.12
10 25.25 8.90 25.21 8.75 -0.15
11 25.04 8.16 25.00 8.02 -0.14
12 24.87 7.53 24.84 7.41 -0.12

Panel B: monthly liquidity shock probability q = 90%

Baseline Increase consumption Lt
T ξ∗t α∗t ξ∗t α∗t diff. α∗t
1 6.19 35.42 5.13 21.99 -13.43
2 19.90 19.61 16.92 5.45 -14.15
3 23.97 12.39 21.40 -2.78 -15.17
4 20.74 8.38 23.22 -7.68 -16.06
5 22.31 5.89 24.33 -10.99 -16.88
6 21.93 4.25 25.59 -13.32 -17.57
7 24.77 3.11 26.09 -14.99 -18.10
8 24.57 2.31 26.61 -16.48 -18.79
9 24.42 1.73 27.22 -17.54 -19.27
10 24.32 1.30 27.02 -18.41 -19.71
11 25.25 0.98 27.69 -19.19 -20.17
12 25.19 0.75 28.38 -19.81 -20.56
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Table 3. Shadow costs in four asset classes
This table shows the shadow costs in basis points for investors who face liquidity shock l in four
asset classes: private equity, real estate, corporate bonds, and stocks. In all asset classes we assume
the following parameter values: risk-aversion parameter γ = 5, time-preference discount factor
β = 0.91, return on the risk-free rate rf = 2.8%, average and standard deviation of the return
on the liquid risky asset µS = 11.3% and σS = 17.8%. For each asset class we then use different
parameter values to characterize that asset class. Private equity: horizon T = 10 year, average
and standard deviation of the return on the illiquid asset µX = 11.3% and σX = 17.8%, the
correlation coefficient ρSX = 0.25, the income return d = 0, the trading intensity of the illiquid
asset η = 0 (p = 0), and the transaction costs equal to φ = 1%. Real estate: horizon T = 10 year,
average and standard deviation of the return on the illiquid asset µX = 12.2% and σX = 18.3%,
the correlation coefficient ρSX = 0.4, the income return d = 9.4%, trading intensity η = 0.2
(p = 1.65%), and the transaction costs φ = 6%. Corporate bonds: horizon T = 10 year, average
and standard deviation of the return on the illiquid asset µX = 7.0% and σX = 6.6%, the correlation
coefficient ρSX = 0.35, the income return d = 4.2%, the trading intensity of the illiquid asset η = 28
(p = 90%), and transaction costs φ = 0.46%. Stocks: horizon T = 1 year, average and standard
deviation of the return on the illiquid asset µX = 11.3% and σX = 17.8%, the correlation coefficient
ρSX = 0.8, the income return d = 0, the trading intensity of the illiquid asset η =∞ (p = 1), and
transaction costs φ = 4.0%.

Panel A: private equity
Baseline ρ = 0.6 T = 15 ρ = 0.6, T = 15

Liquidity shock
0.0 4 0 0 0
0.3 23 12 8 4
0.5 55 29 24 9

Panel B: real estate
Baseline η = 10% T = 5 η = 10%, T = 5

Liquidity shock
0.0 0 1 4 6
0.3 16 16 28 33
0.5 36 39 51 71

Panel C: corporate bonds
Baseline φ = 0.58% T = 1 φ = 0.58%, T = 1

Liquidity shock
0.0 80 85 74 79
0.3 64 65 50 59
0.5 35 38 26 32

Panel D: stocks
Baseline φ = 8% T = 10 φ = 8%, T = 10

Liquidity shock
0.0 54 108 0 0
0.3 50 100 6 11
0.5 46 83 12 17
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Figure 1. Optimal consumption

This graph shows the optimal consumption as a function of the investment horizon T and fraction invested

in the illiquid asset that uses the following parameter values: the risk-aversion parameter γ = 5, the time-

preference discount factor β = 0.91, a liquidity shock l = 30% with intensity υ = 10%, the return on the

risk-free rate rf = 2%, the average return on the liquid and illiquid risky asset µS = µX = 9%, the volatility

of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the income return

d = 0, the trading intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.

Figure 2. Optimal liquid risky asset allocation

This graph shows the optimal liquid risky asset allocation as a function of the investment horizon T and

fraction invested in the illiquid asset that uses the following parameter values: the risk-aversion parameter

γ = 5, the time-preference discount factor β = 0.91, a liquidity shock l = 30% with intensity υ = 10%, the

return on the risk-free rate rf = 2%, the average return on the liquid and illiquid risky asset µS = µX = 9%,

the volatility of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the

income return d = 0, the trading intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 3. Optimal illiquid asset allocation

This graph shows the optimal illiquid asset allocation as a function of the investment horizon T that uses the

following parameter values: the risk-aversion parameter γ = 5, the time-preference discount factor β = 0.91,

a liquidity shock l = 30% with intensity υ = 10%, the return on the risk-free rate rf = 2%, the average

return on the liquid and illiquid risky asset µS = µX = 9%, the volatility of the liquid and illiquid risky

asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the income return d = 0, the trading intensity

of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 4. No-trading region

This graph shows the no-trading region of the investor with an investment horizon T = 10 (in years) that

uses the following parameter values: the risk-aversion parameter γ = 5, the time-preference discount factor

β = 0.91, a liquidity shock l = 30% with intensity υ = 10%, the return on the risk-free rate rf = 2%, the

average return on the liquid and illiquid risky asset µS = µX = 9%, the volatility of the liquid and illiquid

risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the income return d = 0, the trading

intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 5. The shadow costs as a function of the investment horizon

This graph shows the shadow costs as a function of the investment horizon T (in months) that assumes the

following parameter values: the risk-aversion parameter γ = 5, the time-preference discount factor β = 0.91,

a liquidity shock l = 30% with intensity υ = 10%, the return on the risk-free rate rf = 2%, the average

return on the liquid and illiquid risky asset µS = µX = 9%, the volatility of the liquid and illiquid risky

asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the income return d = 0, the trading intensity

of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 6. The shadow costs as a function of the trading probability

This graph shows the shadow costs as a function of the monthly trading probability p (= 1 − exp(−ηh))

for the investor at horizons T = 1 and T = 10 (in years) that assumes the following parameter values: the

risk-aversion parameter γ = 5, the time-preference discount factor β = 0.91, a liquidity shock l = 30% with

intensity υ = 10%, the return on the risk-free rate rf = 2%, the average return on the liquid and illiquid risky

asset µS = µX = 9%, the volatility of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation

coefficient ρSX = 0, the income return d = 0, and the transactions costs φ = 1%.
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Figure 7. The shadow costs as a function of the transaction costs

This graph shows the shadow costs as a function of the transaction costs φ for the investor at horizons T = 1

and T = 10 (in years) that assumes the following parameter values: the risk-aversion parameter γ = 5, the

time-preference discount factor β = 0.91, a liquidity shock l = 30% with intensity υ = 10%, the return on

the risk-free rate rf = 2%, the average return on the liquid and illiquid risky asset µS = µX = 9%, the

volatility of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the

income return d = 0, and the trading intensity of the illiquid asset η = 50%.
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Figure 8. The shadow costs as a function of the level liquidity shock

This graph shows the shadow costs as a function of the level liquidity shock l for the investor at horizon

T = 1 and T = 10 (in years) that assumes the following parameter values: the risk-aversion parameter γ = 5,

the time-preference discount factor β = 0.91, intensity of the liquidity shock υ = 10%, the return on the

risk-free rate rf = 2%, the average return on the liquid and illiquid risky asset µS = µX = 9%, the volatility

of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the income return

d = 0, the trading intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 9. The shadow costs and two interpretations for the liquidity shock

This graph shows the shadow costs as a function of the investment horizon T (≥ 2), comparing the liquidity

shock modeled as a temporary increase in consumption to the baseline specification. We show the results for

monthly liquidity shock probabilities q = 0.83% and q = 90%. We use the following parameter values: the

risk-aversion parameter γ = 5, the time-preference discount factor β = 0.91, a liquidity shock l = 30%, the

return on the risk-free rate rf = 2%, the average return on the liquid and illiquid risky asset µS = µX = 9%,

the volatility of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the

income return d = 0, the trading intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 10. The shadow costs as a function of income return

This graph shows the shadow costs as a function of the income return d for the investor at horizon T = 1

and T = 10 (in years) that assumes the following parameter values: the risk-aversion parameter γ = 5, the

time-preference discount factor β = 0.91, a liquidity shock l = 30% with intensity υ = 10%, the return on

the risk-free rate rf = 2%, the average return on the liquid and illiquid risky asset µS = µX = 9%, the

volatility of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the

trading intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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Figure 11. The shadow costs as a function of the price of risk

This graph shows the shadow costs as a function of the expected return of the illiquid asset for the investor

at horizon T = 1 and T = 10 (in years) that assumes the following parameter values: the risk-aversion

parameter γ = 5, the time-preference discount factor β = 0.91, a liquidity shock l = 30% with intensity

υ = 10%, the return on the risk-free rate rf = 2%, the average return on the liquid risky asset µS = 9%,

the volatility of the liquid and illiquid risky asset σS = σX = 18.5%, the correlation coefficient ρSX = 0, the

income return d = 0, the trading intensity of the illiquid asset η = 50%, and the transactions costs φ = 1%.
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A. Proof of optimal consumption and investment strategies

Proof of Theorem 2.3. Instead of the endogenous variables (Wt, Xt), we use the pair (Wt +

Xt, ξt) as endogenous state variables. That is, we write:

Ct = αt(Wt +Xt, ξt)(Wt +Xt),

θt = θt(Wt +Xt, ξt).

Now, rewrite the evolution of total wealth Wt +Xt using budget constraints (3)-(4) as:

Wt +Xt = (Wt−h +Xt−h)

× [(1− ξt−h − αt−h − φ|4ξt−h| − lt−h)×
(

exp(r
(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
+ ξt−h exp(d) + ξt−h

(
exp(rXt )− exp(d)

)
], (19)

ξt =
ξt−h

(
exp(rXt )− exp(d)

)
(1− ξt−h − αt−h − φ|4ξt−h| − lt−h)×

(
exp(r

(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
+ ξt−h exp(d) + ξt−h

(
exp(rXt )− exp(d)

) .
(20)

where 4ξt−h = ξ∗t−h − ξt−h if 1Tt−h = 1 and 4ξt−h = 0 if 1Tt−h = 0.

The proof is by backward induction. At the final horizon t = T , the claim is obviously

correct with αT ≡ 1 and HT (ξT ) ≡ (1 − φξT )1−γ. At time T , θT is irrelevant. Now, for

the induction argument, assume that (12)-(15) holds at time t. Then, we need to show that

(12)-(15) also holds at time t− h. From the value function (9), evaluated at time t− h and
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substituting (12), we find:

Vt−h(Wt−h +Xt−h, ξt−h)

= max
θt,ξt,Ct

βt−h
C1−γ
t−h

1− γ
+ Et−hVt(Wt +Xt, ξt)

= max
θt,ξt,Ct

βt−h
(αt−h(Wt−h +Xt−h))

1−γ

1− γ

+ Et−h[βt
(Wt +Xt)

1−γ

1− γ
Ht(ξt)]

= max
θt,ξt,Ct

βt−h
(Wt−h +Xt−h)

1−γ

1− γ
×

(
α1−γ
t−h + βEt−h[{(1− ξt−h − αt−h − φ|4ξt−h| − lt−h)

×
(

exp(r
(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
+ ξt−h exp(d)

+ ξt−h
(
exp(rXt )− exp(d)

)
}1−γHt(ξt)]

)
= max

θt,ξt,Ct

βt−h
(Wt−h +Xt−h)

1−γ

1− γ
Ht(ξt) (21)

At time t− h, the penalty function Ht−h(ξt−h) equals:

Ht−h(ξt−h) = α1−γ
t−h + βEt−h[{(1− ξt−h − αt−h − φ|4ξt−h| − lt−h)

×
(

exp(r
(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
+ ξt−h exp(d) + ξt−h

(
exp(rXt )− exp(d)

)
}1−γHt(ξt)] (22)

Therefore, the function Ht−h(ξt−h) is a function of t− h and ξt−h only and hence (12) holds

for all t. We continue with proving (13)-(14) at time t− h. The first-order conditions of the

decision variables αt−h and θt−h equal:

αUC∗t−h = arg max
αt−h

(αt−h(Wt−h +Xt−h))
1−γ

1− γ
+ Et−hVt(Wt +Xt, ξt), (23)

θ∗t−h = arg max
θt−h

(αt−h(Wt−h +Xt−h))
1−γ

1− γ
+ Et−hVt(Wt +Xt, ξt), (24)
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where αUC∗t−h is the solution if the investor were unconstrained, i.e., when constraint (5)

does not bind. Because we assume that the investor cannot borrow against the illiquid asset

the constrained solution becomes:

αC∗t−h =


αUC∗t−h if αUC∗t−h ≤ 1− ξt−h − l

1− ξt−h − l if αUC∗t−h > 1− ξt−h − l.
(25)

We can now rewrite (23) and (24) as:

∂Vt−h
∂αt−h

= βt−h(αt−h(Wt−h +Xt−h))
−γ

− Et−h[
∂Vt

∂Wt +Xt

(
exp(r

(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
]

+ Et−h[
∂Vt
∂ξt

ξt
1

Wt +Xt

(
exp(r

(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
] = 0, (26)

∂Vt−h
∂θt−h

= Et−h[
∂Vt

∂Wt +Xt

(
exp(rSt )− exp(r

(h)
f )
)

]

+ Et−h[
∂Vt
∂ξt

ξt
1

Wt +Xt

(
exp(rSt )− exp(r

(h)
f )
)

] = 0. (27)

To see that both α∗t−h and θ∗t−h depend only on ξt−h, we solve (26) and (27) and substitute

(19) into (26) and (27), we get:

∂Vt−h
∂αt−h

= α−γt−h + βEt−h[{
(
1− ξt−h − αt−h − φ|4ξt−h| − lt−h

)(
exp(r

(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
+ ξt−h exp(d) + ξt−h

(
exp(rXt )− exp(d)

)
}−γ ×

(H ′t(ξt)
1− γ

ξt −Ht(ξt)
)

exp(r
(h)
f )],

= 0 (28)

∂Vt−h
∂θt−h

= Et−h[{
(
1− ξt−h − αt−h − φ|4ξt−h| − lt−h

)(
exp(r

(h)
f ) + θt−h(exp(rSt )− exp(r

(h)
f ))

)
+ ξt−h exp(d) + ξt−h

(
exp(rXt )− exp(d)

)
}−γ ×

(
Ht(ξt)−

H ′t(ξt)

1− γ
ξt

)(
exp(rSt )− exp(r

(h)
f )
)

]

= 0. (29)

The first-order conditions (28) and (29) depend only on time t − h and the fraction
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invested in the illiquid asset ξt−h. In this way, the optimal consumption and the fraction

invested in the liquid risky assets can indeed be written as in (13) and (14), so (13)-(14)

from (12)-(15) holds for all t. We finish the proof by showing that (15) also holds at time

t − h. When a trading opportunity arises at t − h, the investor chooses ξt−h such that the

value function at t− h is optimized:

ξ∗t−h = arg max
ξt−h

Vt−h(Wt−h +Xt−h, ξt−h) = arg max
ξt−h

βt−h
(Wt−h +Xt−h)

1−γ

1− γ
Ht−h(ξt−h)

= arg min
ξt−h

Ht−h(ξt−h). (30)

B. Numerical implementation

This appendix provides an outline of the numerical method to solve the baseline model. First,

we describe the sequence of making decisions. Second, we explain the numerical solution

technique to solve for the decision variables.

B.1. Sequence of decision making

Timeline B.1 depicts the sequence of making decisions. The endogenous variables, liquid

wealth Wt and illiquid wealth Xt, are defined as total wealth before consumption, liquidity

shocks, and returns earned in period (t, t+ h]. Based on the actual fraction allocated to the

illiquid asset ξt, the investor chooses the optimal fraction of total wealth to be consumed in

period (t, t + h], α∗t (ξt), and the optimal allocation towards the liquid risky asset, θ∗t (ξt). If

a trading opportunity arises at time t, the investor chooses simultaneously ξ∗t , α
∗
t (ξ
∗
t ) and

θ∗t (ξ
∗
t ). Further, by the assumption X0 ≥ 0 and the inability to borrow against the illiquid

asset, the possible values for ξt are restricted to the interval [0, 1].
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t

Wt +Xt, ξt Lt, C
∗
t , θ∗t , (ξ∗t ) RX

t+h, R
S
t+h

t+ h

Wt+h +Xt+h, ξt+h

B.2. Numerical solution technique

The model is solved by means of backward induction, where we start solving the problem

at the final date t = T and solve the model backwards for each period until arriving at time

t = 0. At the final horizon t = T , the investor can always liquidate illiquid wealth and

we have αT ≡ 1 and HT (ξt) ≡ (1 − φξT )1−γ. To solve for ξ∗T−h, αt(ξT−h), and θt(ξT−h), we

construct a grid for ξT−h ∈ [0, 1]. We simulate M = 10, 000 trajectories for the exogenous

state variables, the returns on the liquid and illiquid risky asset in period (T − h, T ], rST and

rXT , from a multi-normal distribution with mean and variance-covariance matrix as described

in Section 2.1. We also simulate M = 10, 000 trajectories for the liquidity shock indicator

1LT−h from a Bernoulli distribution as described in Section 2.2.

For each grid point, by using nonlinear least squares, we solve the first-order conditions

with respect to consumption (28) and the allocation towards the liquid risky asset (29) by

using HT (ξT ) ≡ (1 − φξT )1−γ, rST , rXT , and 1LT−h to find α∗T−h(ξT−h) and θ∗T−h(ξT−h). Then

we are able to compute HT−h(ξT−h) and solve for ξ∗T−h = arg minξT−h
HT−h (ξT−h) with the

corresponding consumption level α∗T−h(ξ
∗
T−h) and the allocation to the liquid risky asset

θ∗T−h(ξ
∗
T−h). This gives us the optimal solution at time T − h.

We then solve for the optimal solution at time T−2h in the same way, except that we also

simulate M = 10, 000 trajectories for the trading indicator 1TT−h from a Bernoulli distribution

as described in Section 2.2. In the scenarios the investor is able to trade (1TT−h = 1), we

use HT−h(ξ
∗
T−h) and in the scenarios the investor is unable to trade (1TT−h = 0), we use

HT−h(ξT−h). Together with rST−h, r
X
T−h, and 1LT−2h we find α∗T−2h(ξT−2h) and θ∗T−2h(ξT−2h).

We again compute HT−2h(ξT−2h) and solve for ξ∗T−2h = arg minξT−2h
HT−2h (ξT−2h) with the
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corresponding consumption level α∗T−2h(ξ
∗
T−2h) and the allocation to the liquid risky asset

θ∗T−2h(ξ
∗
T−2h). We can continue this approach until we arrive at t = 0.
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